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Abstract. The aim of collaborative clustering is to reveal the common
structure of data distributed on different sites. In this paper, we present
a new approach for the topological collaborative clustering using a gen-
erative model, which is the Generative Topographic Mappings (GTM).
In this case, maps representing different sites could collaborate without
recourse to the original data, preserving their privacy. Depending ont the
data structure, there are three different ways of collaborative clustering:
horizontal, vertical and hybrid. In this study we introduce the Collabo-
rative GTM for the vertical collaboration. The article presents the for-
malism of the approach and its validation. The proposed approach has
been validated on several datasets and experimental results have shown
very promising performance.

Keywords: Collaborative clustering, Prototype based clustering, Gen-
erative Topographic Mapping, Privacy preserving.

1 Introduction

The Collaborative Clustering [7] is an emerging problem in data mining and
only some work on this subject have been made in the literature, [7] [8] [4] [5]
[2]. In this study, we assume that we have a group of datasets distributed on
different sites which could include data about different individuals described by
the same variables or the datasets could represent the same samples but with
different descriptors (variables). For example, the data could be describing cu-
tomers of banking institutions, stores, medical organizations, etc. The ultimate
goal of every organization is to find out some key relationships in its dataset.
This discovering could be finest by taking into account the dependencies between
the different analysis carried out by various sites, in order to produce an accurate
view of the global hidden structure in different datasets without sharing data
between them. The fundamental concept of collaboration is that the clustering
algorithms operate locally (namely, on individual data sets) but collaborate by
exchanging information about their findings [7]. So we propose an Collabora-
tive Generative Model divided into two phases: a local phase and a phase of
collaboration. The local phase would apply a clustering algorithm based on pro-
totypes (classical GTM), locally and independently on each database. The phase
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of collaboration would work to collaborate each of the databases with all classi-
fications associated to other databases obtained from the local phase. Thus, as
a result, we obtain on each site a clustering results similar to the results that we
would obtain if we had ignored the constraint of condentiality, i.e. to collaborate
databases themselves. At the end of the two phases, all the local clustering will
be enriched.

The rest of this paper is organized as follows: we present the principle of the
GTM and EM algorithm in Section 2. Our proposed Vertical Collaborative Gen-
erative Model is presented in section 3. In Sections 4, we present the valdiation
of the proposed approach on different datasets. Finally the paper ends with a
conclusion and some future works for the proposed methods.

2 The GTM Model as a Local Step for the Collaborative
Clustering

GTM was proposed by Bishop et al. [I] as a probabilistic counterpart to the Self-
organizing maps (SOM) [6]. GTM is defined as a mapping from a low dimensional
latent space onto the observed data space. The mapping is carried through by
a set of basis functions generating a constrained mixture density distribution. It
is defined as a generalized linear regression model:

y=y(zW)=Wa(z) (1)

where y is a prototype vector in the D-dimensional data space, ¢ is a matrix
consisting of M basis functions (¢ (z), ..., da(z)), introducing the non-linearity,
W is a D x M matrix of adaptive weights wg,, that defines the mapping, and z
is a point in latent space. The standard definition of GTM considers spherically
symmetric Gaussians as basis functions, defined as:

R e @)
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where u,, represents the centers of the basis functions and ¢ - their common
width. Let D = (x1,...,2n) be the data set of N data points. A probability
distribution of a data point z,, € R” is then defined as an isotropic Gaussian
noise distribution with a single common inverse variance 3:

Planlz, W, 8) = N(y(z, W), 5)
- (%)M exp {—§||xn - y<z7W>||2} 3)

The distribution in z-space, for a given value of W, is then obtained by integra-
tion over the z-distribution

p(a| W, B) = / Pl W, B)p(=)d= (4)
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and this integral can be approximated defining p(z) as a set of K equally weighted
delta functions on a regular grid,

K
Z z— 2k) (5)

So, equation () becomes

=

p(a|W, B) = Z @)z, W, B) (6)

For the data set D, we can determine the parameter matrix W, and the inverse
variance 3, using maximum likelihood. In practice it is convenient to maximize
the log likelihood, given by:

LW, B) = mﬂp%wm

al 1
SDIRES ) o

i=1

2.1 The EM Algorithm

The maximization of (7) can be regarded as a missing-data problem in which
the identity 4 of the component which generated each data point z,, is unknown.
The EM algorithm for this model is formulated as follows:

The posterior probabilites, or responsibilites, of each Gaussian component i
for every data point x, using Bayes’ theorem are calculated in the E-step of the
algorithm in this form

Tin = D(2i|Tn, Woid, Bold)
_ p(xn|zi, Woid, Boid)
Zf/(:l P(@n| 2}, Woids Botd)
exp{—5 |z, — Wo(2)|*}

= 8
Yooy exp{=5 e — Wo(=))]12} )

As for the M-step, we consider the expectation of the complete-data log likeli-
hood in the form

E[ﬁcomp W 6 Z Z Tin ln{p xn|zu w, ﬁ)} (9)
n=1 =1
The parameters W and § are now estimated maximizing (@), so the weight
matrix W is updated according to:
T GOW,,

new

= dTRX (10)
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where, @ is the K x M matrix of basis functions with elements @;; = ¢;(2;), R
is the K x N responsability matrix with elements r;,, X is the N x D matrix
containing the data set, and G is a K x K diagonal matrix with elements

N
i = Y Tin (11)
n=1

The parameter § is updated according to

1 1 N K
= 55 20 3 rinlla = W) (12

Prew n=1i=1

In the proposed Collaborative Clustering Model we will use the GTM and EM
as a local step, and an adaptaion of the GTM to transfer the knowledge from a
dataset to a map as described in the following section.

3 Collaborative Generative Topographic Mappings

According to the structure of datasets to collaborate, there are three main types
of collaboration principle: horizontal, vertical and hybrid. In this paper, we are
specifically interested in vertical collaboration. The vertical collaboration is to
collaborate the clustering results obtained from different datasets described by
the same variables, but having different objects. In this paper, we study the
collaboration between several clus- tering results, especially the collaboration
between several Generative topographic mappings. Each dataset is clustered
through a GTM, and to simplify the formalism, the maps built from various
datasets will have the same dimensions and the same structure.

So, to collaborate GTMs, we will base on [3], considering the term of penal-
ization as a collaboration term, which will penalize the distance between the
prototypes of different datasets.

In the vertical collaboration case, all datasets have the same variables (same
description space), but have different observations, N[ii] # N[jj]. In this case,
the observations of these datasets have the same size, and the dimension of the
the prototype vectors for all the GTMs will be the same. Suppose that we seek
to find the GTM of the dataset [ii] collaborating it with the [jj] dataset, the
E-step stays as it is, in which we find the posterior probabilities:

[i3]  ,let]
Tin = P(2i|Tn, Woiq: Boi)
plalz Woia Bota)
Y CHERIH N
__ exp{= o, — WGl (z) ) 13)
St exp{ =I5l — WGl ()2}

where n € {1,..., N[ii]}.
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In the M-step, we find W and 8l maximizing

Ler [”] — E[Ecomp(w[ii],ﬁ[ii])]_

971 plags gl [4d] 4 [44]) 157] +[54] 9 (14)
i ZZ S Wl () — Wl gl ) |

We derivate (@) w.r.t W and we put it equal to 0. This leads to write the
solution in matrix notation in the following form:

plil” (Gq')[ii] + a%] G@W]) W#;LT _ ol px _ aggj]@[“]TG@jj]W[jj]T (15)

where, @ is the K x M matrix of basis functions with elements @;; = ¢;(z;),
R is the K x N[ii] responsability matrix with elements r;,, X is the N[ii] x D
matrix containing the data set, and G is a K x K diagonal matrix with elements

NIii]

i = Z Tin (16)
n=1

Then,

Wi — (q)[ii]T (G@W 4 a{qﬂ?jl G@m)) - (q)[ii]T RX — a{q‘qjlgb[ﬁ]TG@[jjJW[jjJT)
(17)
By derivating ([I4) w.r.t 8] and putting it equal to 0, we obtain

N [ii]

1
g, TN [“]

K

Z [rinllzn = WEL U (@)1 — afif] rin W, 600 (2) = w6071 ()]
B (18)
Therefore, the proposed Collaborative Clustering method is presented as fol-
lowing:

HM

Algorithme 1. The vertical collaboration GTM algorithm
Fix the value of a{ffj], a high value means strengthful collaboration.
Local step:
for t =1 to Niter do
For each BDJii], it =1 to P :
Build the map using the classical GTM algorithm as described in Section 2.
Collaboration step:
For the collaboration of the [i7] map with the [jj] map:
Update the prototypes of the [i4] map by using the function 19
end for
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4 Experimental Results

To evaluate our proposed collaborative approache we applied our algorithm on
several datasets of different size and complexity. The used datasets are the follow-
ing: Waveform, Wisconsin Diagnostic Breast Cancer (wdbc), Isolet and Spam-
base.

As criterion to validate our approach we used the purity (accuracy) index of
the map which is equal to the average purity of all the cells of the map. A good
GTM map should have a high degree of the purity index.

The purity of cells is the percentage of data belonging to the majority class.
Assuming that the data labels set L = Iy, 12, ...,/j| and the prototypes set C' =
C1,C2, ..., ¢|c| are known, the formula that expresses the purity of a map is the
following:

[C] |L|
ey max;_|cikl

~ (19)
peritll e

purity =

where || is the total number of data associated with the cell ¢, and ¢z is the
number of data of class [; which are associated to the cell ¢, and N - the total
number of data.

4.1 Data Sets

— waveform dataset: This data set consists of 5000 instances divided into 3
classes. The original base included 40 variables, 19 are all noise attributes
with mean 0 and variance 1. Each class is generated from a combination of
2 of 3 "base” waves.

— Wisconsin Diagnostic Breast Cancer (WDBC): This data has 569 instances
with 32 variables (ID, diagnosis, 30 real-valued input variables). Each data
observation is labeled as benign (357) or malignant (212). Variables are com-
puted from a digitized image of a fine needle aspirate (FNA) of a breast mass.
They describe characteristics of the cell nuclei present in the image.

— Isolet: This data set was generated as follows. 150 subjects spoke the name
of each letter of the alphabet twice. Hence, we have 52 training examples
from each speaker. The speakers are grouped into sets of 30 speakers each,
and are referred to as isoletl, isolet2, isolet3, isolet4, and isolet5. The data
consists of 1559 instances and 617 variables. All variables are continuous,
real-valued variables scaled into the range -1.0 to 1.0.

— Spam Base: The SpamBase data set is composed from 4601 observations de-
scribed by 57 variables. Every variable described an e-mail and its category:
spam or not-spam. Most of the attributes indicate whether a particular word
or character was frequently occurring in the e-mail. The run-length attributes
(55-57) measure the length of sequences of consecutive capital letters.

In the following, we will explain the results obtained after applying the Collab-
orative GTM algorithm for these datasets. The data sets mentioned above are
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Table 1. Experimental results of the vertical collaborative approach on different
datasets

Dataset Map |Purity|| Dataset Map |Purity
Waveform| GTM; | 86.44 Isolet GTM, |87.17
GT DM, |86.52 GTM- |86.83

GTMi_2| 87.16 GTM;_2| 87.29

GTMsy_,1| 87.72 GTM>_1| 85.87

Wdbc GT M 96 ||SpamBase| GTM; |52.05
GTM> |96.34 GTM> |51.68
GTMi_2|96.08 GTM;_2| 5241

GT M1 96.15 GT M1 52.17

unified and need to be divided in subsets in order to have distributed data sce-
narios. So, we divide every data set into two subsets, having the same features,
but with different observations. First, we applied the local phase, to obtain a
GTM map for every subset. The size of all the used maps were fixed to 10 x 10
except for the Isolet dataset whose map size is 5 x 5. Then we started the col-
laboration phase, in which we seek a new GTM for the subset but collaborating
it with the other subset. We calculated the purity index of the new GTMs after
collaboration, results are shown in Table [

In most of the cases, we remark that the purity of the map is getting higher
or do not change drastically after the collaboration and strongly depends on the
relevance of the collaborative map (the quality of the collaborative classification)
and on the confidence on this map (the collaboration parameter). However, for
the Isolet dataset, collaborating the second map with the first subset deacrese the
accuracy index from 86.84% to 85.87%. For the SpamBase dataset we have only
a small improvement of the purity index when collaborating the both maps. This
conclusion corresponds to the intuitive understanding of the principle and to the
consequences of such cooperation. Also, note that the goal was not to improve
the clustering accuracy but to take into account the distant information and
to build a new map using another dataset, and this procedure can deacrease
sometimes the acuracy index which depends on the quality of the dataset to
collaborate.

5 Conclusion

In this study we proposed a methodology to apply a vertical collaborative clus-
tering on distributed data. The proposed algorithm is based on GTM as a local
phase of clustering, and an extension of it in the collaboration phase. The ver-
tical collaborative learning approach is adapted to the problem of collaboration
of several datasets containing the same variables but with different observations.
During the collaboration step, we do not need the datasets but only the results
of the distant classifications. Thus, each site uses its dataset and the informa-
tion from other classifications, which would provide a new classification that
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is as close as possible to that which would be obtained if we had centralized
the datasets. The approach has been validated on multiple databases and the
experimental results have shown promising performance.

Several perspectives can be considered for this work as: to propose an ap-
proach for the horizontal case of collaboration; add a step in the collaboration
phase to estimate the best values of the coefficients of collaboration; to fuse
all the classifications obtained after the collaboration and to build a consensus
classification for all the distant sites.
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