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The aim of collaborative clustering is to reveal the common structure of data distributed on
di®erent sites. In this paper, we present a formalism of topological collaborative clustering using
prototype-based clustering techniques; in particular we formulate our approach using Koho-
nen's Self-Organizing Maps. Maps representing di®erent sites could collaborate without re-
course to the original data, preserving their privacy. We present two di®erent approaches of
collaborative clustering: horizontal and vertical. The strength of collaboration (con¯dence ex-
change) between each pair of datasets is determined by a parameter, we call coe±cient of
collaboration, to be estimated iteratively during the collaboration phase using a gradient-based
optimization, for both the approaches. The proposed approaches have been validated on several
datasets and experimental results have shown very promising performance.

Keywords: Collaborative clustering; distributed data; prototype-based clustering; self-organiz-
ing maps; privacy preserving.

1. Introduction

In this study, we assume that we have a group of datasets distributed on di®erent

sites; data could be describing customers of banking institutions, stores, medical

organizations, etc. The datasets could include data about di®erent individuals

described by the same variables; in this case we present the vertical collaboration

approach. Otherwise, the datasets could represent the same individuals but with

di®erent descriptors (variables), re°ecting the activities of the organization. Such

case is considered to be the most di±cult one, since di®erent variables mean that

samples are described in di®erent feature spaces, thus di®erent dimension.

Therefore we present a horizontal collaboration approach for this case. The ul-

timate goal of every organization is to ¯nd out some key relationships in its

dataset. This discovering could be ¯nest by taking into account the dependencies

between the di®erent analyses carried out by various sites. By that, it produces an
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accurate view of the global hidden structure in di®erent datasets without sharing

data between them. So, fusing all datasets in one large dataset then applying

a clustering technique on this large dataset is not feasible because of data

con¯dentiality.

Most of distributed data clustering (DDC)1,2 techniques aggregate (or fuse) the

clustering results into one set to form a consensus, then apply a clustering technique

on this consensus taking into account all their datasets, taking in consideration the

con¯dentiality of data. But in some cases, due to some technical problems, the

classi¯cation of a single large dataset may not be feasible. So, a collaborative ap-

proach would distribute the classi¯cation and merge the di®erent results.

The fundamental concept of collaboration is that the clustering algorithms op-

erate locally (namely, on individual datasets) but collaborate by exchanging infor-

mation about their ¯ndings.3 So we propose an approach divided into two phases: a

local phase and a phase of collaboration. The local phase would apply a clustering

algorithm based on prototypes, locally and independently on each database, which

will result in obtaining a score for each of these bases. The phase of collaboration

would work to collaborate each of the databases with all classi¯cations associated to

other databases obtained from the local phase. We consider collaboration is done by

pairs. In this paper, we divide \the collaboration phase" into two steps, the ¯rst step

in which we compute the prototypes matrix, and the second step speci¯ed for

learning the con¯dence links.4 As a result, we obtain on each site clustering results

similar to the results that we would obtain if we had ignored the constraint of

con¯dentiality, i.e., to collaborate databases themselves. At the end of the two

phases, all the local clustering will be enriched.

The Collaborative Clustering3,5�8 is an emerging problem in data mining and

only some work on this subject have been made in the literature. We propose two

approaches, one for the horizontal collaborative clustering and one for the vertical

collaborative clustering. The horizontal approach for collaboration is used for

datasets that describe the same objects but with di®erent variables. This approach

can be seen as a multi-view clustering where the treatment is done on multi-

represented data, i.e., the same set of objects described by several representations

(variables). The vertical approach is for collaborating several datasets of di®erent

objects but described by same variables. During the collaboration phase, we do not

need the datasets; we only need the results of distant classi¯cations. Thus, each site

uses its dataset and the information from other classi¯cations, which would provide

a new classi¯cation. That is as close as possible to what would be obtained if we

had centralized the datasets and then made a clustering. The rest of this paper is

organized as following: we present the principle of collaborative classi¯cation in

Sec. 3 after a short introduction of Self-Organizing Maps (SOM) algorithm in

Sec. 2. Our proposed methodology for collaborative approaches (vertical and hor-

izontal) is presented in Secs. 3.1 and 3.2. The experimental results are presented in

Sec. 4 and a conclusion with some future works for the proposed method is pre-

sented in Sec. 5.
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2. Prototype-Based Clustering Techniques

A large variety of methods of clustering has been developed. Several of these methods

are based on very simple fundamentals, yet very e®ective idea, namely describing the

data under consideration by a set of prototypes, which capture characteristics of the

data distribution (like location, size, and shape), and to classify or divide the dataset

based on the similarity of the data points to these prototypes. The approaches

relying on this idea di®er mainly in the way in which prototypes are described and

how they are updated during the model construction step.

In this paper, we are speci¯cally interested in the topological collaborative clus-

tering (horizontal and vertical collaboration) approaches, proposed by Grozavu and

Bennani,5 and inspired from the works of Pedrycz et al.6,7 on the fuzzy c-means

collaborative clustering. These two approaches are based on the Fuzzy c-means

collaborative clustering and introduce the concept of the self-organization ¯rst in-

troduced in the SOM of Kohonen.9 The goal of SOM is to ¯nd a set of centroids

(reference vectors) and to assign each object in the dataset to be the centroid that

provides the best approximation of that object. The SOM models are often used

because they allow clustering and visualization simultaneously for di®erent types of

data. Indeed, this technique can project the data on discrete spaces that are usually

in two dimensions. The topological collaborative clustering results straightly depend

on the collaboration/con¯dence matrix. The con¯dence matrix precise the strength

of collaboration, so its choice is critical since setting in advance the strength of the

collaboration for each collaboration link (collaboration con¯dence parameters) can

degrade the ¯nal results if it is not set correctly. In an unsupervised collaborative

learning, no knowledge is available and usually this parameter is set to 1 to avoid

unconformity to the collaborative dataset. In this paper, we estimate the values of

the collaboration con¯dence parameters iteratively during the learning process, in-

spired by Ref. 10.

2.1. SOM as local step for the collaborative clustering

The SOM introduced by Kohonen9 have been widely used for unsupervised

classi¯cation and visualization of multidimensional datasets. There is a wide

variety of algorithms for topological maps derived from the original model proposed

¯rst by Kohonen.11�13 These models are di®erent from each other, but share

the same idea to present the large data in a simple geometric relationship on a

reduced topology.

The model consists in the attempting of unsupervised classi¯cation of a learning

set A ¼ fxðiÞ 2 Rn; i ¼ 1; . . . ;Ng where xðiÞ ¼ ðx ðiÞ
1 ;x

ðiÞ
2 ; . . . ;x

ðiÞ
j ; . . . ;x

ðiÞ
n Þ. This

classical model consists in a discrete set C of cells (neurons) called map. This map has

a discrete topology de¯ned by undirected graph; usually it is a regular grid in two

dimensions. The in°uence notion of a cell k on a cell l, which depends on their

proximity, is presented by a kernel function K ðK � 0 and limjxj!1KðxÞ ¼ 0Þ.
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The mutual in°uence between two units k and l is de¯ned by the function Kk;lð:Þ:

Kij ¼
1

�ðtÞ exp � d 2
1ði; jÞ
�2ðtÞ

� �
; ð1Þ

where �ðtÞ is the temperature's function modeling the neighborhood's range:

�ðtÞ ¼ �i

�f

�i

� � t
tmax ð2Þ

with �i and �f are the initial temperature and the ¯nal temperature (for example

�i ¼ 2 and �f ¼ 0:5) and tmax is the maximum allotted time (number of iterations).

The Manhattan distance d1ð:; :Þ between two map units r and s of coordinates ðk;mÞ
and ði; jÞ, is de¯ned by:

d1ðr; sÞ ¼ ji� kj þ jj�mj: ð3Þ
The function Kk;lð:Þ is a Gaussian introduced for each neuron of the map with a

global neighborhood. The size of this neighborhood is limited by the standard

Gaussian deviation �ðtÞ. The units that are beyond this range have a signi¯cant

in°uence (but not null) on the considered cell. The range �ðtÞ is a decreasing function
with time, so, the neighborhood function Kk;lð:Þ will have the same trend with a

standard deviation decreasing in time.

For each cell k of the grid is associated a reference (prototype) vector wðkÞ ¼
ðw ðkÞ

1 ;w
ðkÞ
2 ; . . . ;w

ðkÞ
i ; . . . ;w

ðkÞ
n Þ of size n. We note by W the set of referents. The

learning of this model will be reached by minimizing the distance between input

pattern and prototypes of the map, weighted by the neighborhood. A gradient al-

gorithm can be used for this purpose. The criterion to minimize in this case is:

Rð�;WÞ ¼
XN
i¼1

XC
j¼1

Kj;�ðxðiÞÞjjxðiÞ � wðjÞjj2; ð4Þ

where � assigns each pattern (observation) xðiÞ to a single cell of the SOM.

At the end of the learning, the SOM determines a data partition in C groups

associated with each cell k of the map. Each group or cell is associated with a

reference vector wðkÞ 2 Rn, which will be the representative, the \local mean" or the

prototype of the observation's set associated with this cell.

3. Collaborative Clustering

While collaboration can include a variety of detailed schemes, two of them are the

most essential. We refer to them as horizontal and vertical modes of collaboration or

simply horizontal and vertical clustering. More descriptively, given datasets X½1�;
X½2�; . . . ;X½P � where P denotes their number and X½ii� stands for the iith dataset

(we adhere to the practice of using square brackets to identify a certain dataset), in

horizontal clustering we have the same objects that are described in di®erent feature
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spaces. In other words, these could be the same collection of patients whose records

are developed within each medical institution. In horizontal clustering we deal with

the same patterns and di®erent feature spaces. The communication platform is based

on through the partition matrix (Kernels in case of SOM). As we have the same

objects, this type of collaboration makes sense. The con¯dentiality of data has not

been breached: we do not operate on individual patterns but on the resulting in-

formation granules (fuzzy relations, that is, partition matrices). As this number is far

lower than the number of data, the low granularity of these constructs moves us far

from the original data.

Vertical clustering is complementary to horizontal clustering. Here the datasets

are described in the same feature space but deal with di®erent patterns. In other

words, we consider that X½1�;X½2�; . . . ;X½P � are de¯ned in the same feature space,

while each of them consists of di®erent patterns, dimðX½1�Þ ¼ dimðX½2�Þ ¼ � � � ¼
dimðX½P �Þ, whileX½ii� 6¼ X½jj�. In vertical clustering we are concerned with di®erent

patterns but the same feature space. Hence communication at the level of the pro-

totypes (which are high-level representatives of the data) becomes feasible. Again,

because of the aggregate nature of the prototypes, the con¯dentiality requirement

has been satis¯ed. There are also many hybrid models of collaboration involving

datasets with possible links of vertical and horizontal collaboration, that are not

discussed in the paper.

3.1. Topological horizontal collaboration

Here we formulate the underlying optimization problem implied by objective func-

tion-based clustering, and derive the detailed algorithm. There are P sets of data

located in di®erent spaces (viz., the patterns are described by di®erent features). As

each subset deals with the same patterns, the number of elements in each subset is

Fig. 1. A general scheme of horizontal (left) and vertical (right) collaboration using SOM.
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the same and is equal to N. The collaboration between two subsets is established

through an interaction coe±cient which describes the intensity of the interaction.

In general, �
½jj�
½ii� and �

½jj�
½ii� assume non-negative values. The higher the value of the

interaction (collaboration) coe±cients is, the stronger the collaboration between

the corresponding datasets will be. In this paper, we will estimate the interaction

coe±cients during the collaboration phase of the algorithm. The main idea of the

horizontal collaboration between di®erent SOM is that if an observation from the iith

dataset is projected on the jth neuron in the ii-map, then that same observation in the

jjth dataset will be projected on the same j neuron of the jjth map or one of its

neighboring neurons. In other words, neurons that corresponds to di®erent maps

should capture the same observations. To accommodate the collaboration mechanism

in the optimization process, the objective function of the SOM is expanded into

the form

R
½ii�
H ð�;wÞ ¼ �

½jj�
½ii�

XN
i¼1

Xjwj
j¼1

K
½ii�
�ðj;�ðxiÞÞjjx

½ii�
i � w

½ii�
j jj2

þ
XP

jj¼1;jj 6¼ii

�
½jj�
½ii�

XN
i¼1

Xjwj
j¼1

ðK ½ii�
�ðj;�ðxiÞÞ �K

½jj�
�ðj;�ðxiÞÞÞ2jjx

½ii�
i � w

½ii�
j jj2; ð5Þ

where P represents the number of datasets (or the classi¯cations), N the number of

observations, jwj is the number of prototype vectors from the ii SOM map (the

number of neurons). �ðxiÞ is the assignment function which allows to ¯nd the Best

Matching Unit (BMU), it selects the neuron with the closest prototype from the data

xi using the Euclidean distance.

�ðxiÞ ¼ arg minðjjxi � wjjj2Þ:
�ðijÞ represents the distance between two neurons i and j from the map, and it is

de¯ned as the length of the shortest path linking cells i and j on the SOM map.

K
½cc�
�ði;jÞ is the neighborhood function on the SOM½cc� map between two cells

i and j. The nature of the neighborhood function K
½cc�
�ði;jÞ is identical for all the

maps, but its value varies from one map to another: it depends on the closest

prototype to the observation that is not necessarily the same for all the SOM

maps.

The value of the collaboration parameter � is determined during the ¯rst phase

of the collaboration step, and � ¼ �2. This parameter allows determining the im-

portance of the collaboration between each two datasets, i.e., to learn the collabo-

ration con¯dence between all datasets and maps. Its value belongs to [1�10], it is 1

for the neutral link, when no importance to collaboration is given, and 10 for the

maximal collaboration within a map. Its value varies after each iteration during the

collaboration step. In the case of the horizontal collaborative learning, as shown in

Algorithm 1, the value of the collaboration con¯dence parameter depends on topo-

logical similarity between both collaboration maps. To compute the collaborated
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prototypes matrix, we use gradient optimization technique, we obtain the following

expression:

w�½ii� ¼ argmin
w

½R ½ii�
H ð�;wÞ� ð6Þ

with:

w
�½ii�
jk ðtþ 1Þ ¼ w

�½ii�
jk ðtÞ þ

PN
i¼1 K

½ii�
�ðj;�ðxiÞÞx

½ii�
ik þPP

jj¼1;jj 6¼ii

PN
i¼1 �

½jj�
½ii�Lijx

½ii�
ikPN

i¼1 K
½ii�
�ðj;�ðxiÞÞ þ

PP
jj¼1;jj 6¼ii

PN
i¼1 �

½jj�
½ii�Lij

;

where

Lij ¼ ðK ½ii�
�ðj;�ðxiÞÞ �K

½jj�
�ðj;�ðxiÞÞÞ2:
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Indeed, during the collaboration with a SOM map, the algorithm takes into account

the prototypes of the map and its topology (the neighborhood function). The hori-

zontal collaboration algorithm is presented in Algorithm 1.

3.2. Topological vertical collaboration

In the case of vertical collaborative clustering, contrarily to the horizontal case, we

deal with di®erent datasets where all patterns are described in the same feature

space. We establish communication at the level of prototypes of the datasets that

are de¯ned in the same feature space. The basic idea of collaboration in this case

is the following: a neuron j of iith SOM map and the same neuron j of the jjth

map should be very similar using the Euclidean distance. In other words, neurons

that corresponds to the di®erent maps should represent groups of similar observa-

tions. The proposed objective function governing a search for structure in the iith

dataset is

R
½ii�
V ð�;wÞ ¼ �

½jj�
½ii�

XN
i¼1

Xjwj
j¼1

K
½ii�
�ðj;�ðxiÞÞjjx

½ii�
i � w

½ii�
j jj2

þ
XP

jj¼1;jj 6¼ii

�
½jj�
½ii�

XN ½ii�

i¼1

Xjwj
j¼1

ðK ½ii�
�ðj;�ðxiÞÞ �K

½jj�
�ðj;�ðxiÞÞÞ2jjw

½ii�
j � w

½jj�
j jj2; ð7Þ

where P represents the number of datasets, N the number of observations of the iith

dataset, jwj is the number of prototype vectors from the ii-SOM map and which is

the same for all the maps. We will estimate the coe±cients of collaboration during

the collaboration phase, as same as we did in the horizontal case. Using the gradient

optimization procedure, we obtain the following formulas to compute the prototypes

matrix:

w�½ii� ¼ argmin
w

½R ½ii�
V ð�;wÞ� ð8Þ

with:

w
�½ii�
jk ðtþ 1Þ ¼ w�½ii�ðtÞ þ

PN
i¼1 K

½ii�
�ðj;�ðxiÞÞx

½ii�
ik þPP

jj¼1;jj 6¼ii

PN ½ii�
i¼1 �

½jj�
½ii�Lijw

½jj�
ikPN

i¼1 K
½ii�
�ðj;�ðxiÞÞ þ

PP
jj¼1;jj 6¼ii

PN
i¼1 �

½jj�
½ii�Lij

; ð9Þ

where

Lij ¼ ðK ½ii�
�ðj;�ðxiÞÞ �K

½jj�
�ðj;�ðxiÞÞÞ2:

The learning algorithm in this case is presented by Algorithm 2.

4. Experimental Results

To evaluate our proposed collaborative approaches we applied our algorithms on

several datasets of di®erent size and complexity. We chose the following datasets:
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waveform, Wisconsin Diagnostic Breast Cancer (wdbc), Isolet, Madelon and

Spambase. We will give more details on the waveform dataset to illustrate the

principle of the proposed approaches, especially in the validation.

As criteria to validate our approach we used the quantization error (distortion)

on many maps of di®erent sizes and the accuracy index for each SOM. The

quantization error is the most used criteria to evaluate the quality of a Kohonen's

topological map. This error measures the average distance between each data

vector and its winning neuron (BMU). It is calculated using the following

expression:

qe ¼ 1

N

X
jjxðiÞ � wxi

jj2; ð10Þ

where N represents the number of data vectors and wxðiÞ is the nearest prototype to

the vector xi. The values of the quantization error depends on the size of datasets and

on the sizes of builded maps, so these values can alter according to the dataset.
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The purity (accuracy) of the map is equal to the average purity of all the neurons.

A good map SOM should have a high degree of the purity index. The purity of a

neuron is the percentage of data belonging to the majority class. Assuming that the

data labels set L ¼ l1; l2; . . . ; ljLj and the prototypes set C ¼ c1; c2; . . . ; cjCj are

known, the purity of a map is expressed by:

purity ¼
XjCj

k¼1

ck
N

� max
jLj
i¼1 jcikj
jckj

; ð11Þ

where jckj is the total number of data associated with the neuron ck, and jcikj is the
number of data of class li which are associated to the neuron ck and N the total

number of data.

4.1. Datasets

. Waveform dataset: This dataset consists of 5000 instances divided into 3 classes.

The original base included 40 variables, 19 are all noise attributes with mean 0 and

variance 1. Each class is generated from a combination of 2 of 3 \base" waves.

. Wisconsin Diagnostic Breast Cancer (WDBC): This data has 569 instances with

32 variables (ID, diagnosis, 30 real-valued input variables). Each data observation

is labeled as benign (357) or malignant (212). Variables are computed from a

digitized image of a ¯ne needle aspirate (FNA) of a breast mass. They describe

characteristics of the cell nuclei present in the image.

. Isolet: This dataset was generated as follows. 150 subjects spoke the name of each

letter of the alphabet twice. Hence, we have 52 training examples from each

speaker. The speakers are grouped into sets of 30 speakers each, and are referred to

as isolet1, isolet2, isolet3, isolet4, and isolet5. The data consists of 1559 instances

and 617 variables. All variables are continuous, real-valued variables scaled into

the range 1.0–1.0.

. Madelon: MADELON is an arti¯cial dataset, which was part of the NIPS 2003

feature selection challenge. This is a two-class classi¯cation problem with con-

tinuous input variables. MADELON is an arti¯cial dataset containing data

points grouped in 32 clusters placed on the vertices of a ¯ve-dimensional hy-

percube and randomly labeled þ1 or �1. The ¯ve dimensions constitute ¯ve

informative features. 15 linear combinations of those features were added to

form a set of 20 (redundant) informative features. Based on those 20 features

one must separate the examples into the 2 classes (corresponding to the �1

labels). The order of the features and patterns was randomized. The original

dataset was splitting in three parts (learning, validation and test), but we used

only 2600 observations from learning set and from validation for which the

classes were known.

. Spam Base: The SpamBase dataset is composed from 4601 observations described

by 57 variables. Every variable described an email and its category: spam or
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not-spam. Most of the attributes indicate whether a particular word or character

was frequently occurring in the email. The run-length attributes (55–57) measure

the length of sequences of consecutive capital letters.

4.2. Data partitionning

The datasets mentioned above are uni¯ed and need to be divided in subsets in order

to have distributed data \scenarios". We will proceed by the vertical and horizontal

partitioning (Fig. 2). In the horizontal approach we divide the datasets into subsets

so that each algorithm operates on di®erent features considering, however, the same

set of individuals. In the case of vertical approach, each algorithm operates on the

same features, dealing, however, with di®erent set of individuals.

4.3. Interpretation of the approach on the waveform dataset

We divided the waveform dataset, of size 5000� 40, into four subsets to assume a

scenario of a horizontal collaboration between four sites. The ¯rst and the second

part of the dataset 2� ð5000� 10Þ correspond to all the relevant variables and the

third and fourth part 2� ð5000� 10Þ contain noisy variables. As the ¯rst and second

datasets are relevant, we expect that the collaboration con¯dence within these

datasets is bigger than the 3rd and 4th datasets.

We selected maps of size 10� 10. Then we achieved the local step of the proposed

approach on all four datasets which is to learn a SOM for all observations of these

datasets. Figure 3 represent the prototypes vectors obtained on all the four datasets

after the local step of the new learning approach. X-axis and Y -axis represent re-

spectively the indices of variables and prototypes for these maps. Figures 3(a) and

3(b) correspond to the maps which contain the relevant variables from the waveform

dataset (1-20) which are represented by the red (darker) color and have an index of

purity of 81.64% and 81.5%, respectively. Knowing that the purity of the map

presenting the waveform dataset before partitionning is 85.84% and the quantization

error is 6.12.

We applied the second step of our algorithm to exchange the clustering infor-

mation between all the maps without using the original data. Figures 4(a) and 4(b)

Fig. 2. Vertical (left) and horizontal (right) partitioning of data.
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illustrate the collaboration between 1st and 4th datasets. After the collaboration, the

purity index decreased to 78.93% because the SOM1 map (81.64%) has used the

information from a noisy map (SOM4) which has very low purity index (40.21%).

Contrarily, by applying the collaboration in the opposite direction, the purity index

of the SOM4!1 map increased to 42.45% due to the collaboration with the relevant

SOM1 map (75.71% of purity). The learned collaboration con¯dence parameter are

for the SOM1, � ¼ 6:03, and for SOM4, � ¼ 1:34 which means that the algorithm

gives more importance to the collaboration with SOM1 and less importance to SOM4

map which contains noisy features.

After the collaboration of the \relevant" second dataset with the irrelevant SO

M3 map, the purity index decreased to 78.18% because the SOM2 map (81.5%) has

used the information from a noisymap (SOM3Þwith a very low purity index (39.37%).

Contrarily, by applying the collaboration step in the opposite direction, the purity

index of the SOM2!3 map increased to 41.67% due to the collaboration with the

relevant SOM2 map with a collaboration con¯dence parameter equals to 5.9 higher

than the con¯dence parameter with the noisy SOM3 map whose value is 1.2.

(a) SOM1 (b) SOM2

(c) SOM3 (d) SOM4

Fig. 3. Visualization of the prototypes after the ¯rst local step (classical SOM).
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The collaboration of a noisy map with a relevant map leads to an improvement of

its quality (the purity index). The task of the horizontal collaboration is a complex

problem because in an unsupervised learning process, it is di±cult to identify rele-

vant maps and we are forced to make the collaboration in both directions. Here

comes the importance of learning the collaboration con¯dence parameters in order to

give more importance to some links.

Table 1 summarizes the purities of the maps and the quantization errors before

and after collaboration. As for the indices of purity, the quantization errors are

improving (decreasing) after a collaboration with a more relevant map. We improve

these indices due to the collaboration process and the learning of the collaboration

con¯dence parameters. The value of each collaboration parameter is given in Table 1.

4.4. Vertical collaboration process: Waveform dataset

To apply vertical collaboration on waveform dataset, we divided the database into 4

subsets. The division was made randomly on the observations. We got 4 databases of

(a) SOM1!4 (b) SOM4!1

(c) SOM1!3 (d) SOM3!1

Fig. 4. Horizontal collaboration between the datasets 1 and 4 and between the 1st and 3rd dataset with

their indices of purity.
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size 1250� 40 and we chose 1 as the value of collaboration parameter. (for the both

directions). The obtained results are summarized in Table 2. We note that in most

cases the purity index increases, as is the case for SOM2!1, SOM3!4, SOM1!4 and

SOM4!1 and the collaboration con¯dence parameters are similar because all the

maps are similar. As all four datasets are described in the same feature space,

the purity of the maps before and after the collaboration is higher compared to the

horizontal collaboration. The quantization error is also improved for the maps

obtained after the collaboration with the maps having a lower quantization error.

4.5. Validation on other datasets

We applied the same experimental protocol on other databases and all computed

indices are presented in Tables 3 and 4, for horizontal and vertical collaboration,

respectively.

The size of all the used maps were ¯xed to 10� 10. From Tables 3 and 4, we note

that the purity index of the SOM maps after the horizontal collaboration increased

Table 2. Experimental results of collaboration

approach on the waveform dataset.

Vertical Collaboration

Map Purity qe �

SOM1
88.33 5.64

SOM2
87.75 5.83

SOM3
90.04 5.24

SOM4
88.76 5.57

SOM1!2
88.06 5.62 2.2

SOM2!1
87.93 5.79 2.47

SOM3!4
90.12 5.07 2.36

SOM4!3
89.57 5.16 2.27

SOM1!4
88.46 5.59 2.41

SOM4!1
88.57 5.51 2.36

Table 1. Experimental results of collaboration

approach on the waveform dataset.

Horizontal Collaboration

Map Purity qe �

SOM1
81.64 1.98

SOM2
79.61 1.87

SOM3
47.19 2.64

SOM4
40.21 2.41

SOM1!4
62.47 2.14 1.2

SOM4!1
54.63 2.27 5.9

SOM2!3
78.93 2.05 1.34

SOM3!2
41.45 2.35 6.03
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for each dataset and the quantization error decreased. This is due to the use of the

information from the maps related to the collaborative datasets. Also, we can note

that the values of the collaboration con¯dence parameters are computed using the

topological structure of the distant maps (distant classi¯cations) and learning these

Table 4. Experimental results of the vertical
collaborative approach on di®erent datasets.

Dataset Map Vertical Collaboration

Purity qe �

Wdbc SOM1
96.71 90.54

SOM2
97.87 67.60

SOM1!2
96.99 71.49 1.42

SOM2!1
97.49 61.47 4.16

Isolet SOM1
98.85 8.19

SOM2
98.46 8.76

SOM1!2
79.54 8.34 1.93

SOM2!1
98.30 8.78 2.04

Madelon SOM1
69.71 61.23

SOM2
69.87 61.15

SOM1!2
74.57 59.59 2.26

SOM2!1
70.71 59.55 2.39

SpamBase SOM1
76.26 61.83

SOM2
70.43 48.27

SOM1!2
72.28 45.98 1.47

SOM2!1
69.78 36.74 4.25

Table 3. Experimental results of the horizontal

collaborative approach on di®erent datasets.

Dataset Map Horizontal Collaboration

Purity qe �

Wdbc SOM1
94.95 1.99

SOM2
97.27 2.07

SOM1!2
95.77 1.84 1.74

SOM2!1
97.32 1.94 2.12

Isolet SOM1
81.20 12.61

SOM2
95.12 14.45

SOM1!2
81.39 12.21 2.05

SOM2!1
96.06 14.18 1.86

Madelon SOM1
60.88 15.58

SOM2
62.64 15.50

SOM1!2
61.01 15.48 1.65

SOM2!1
63.57 15.40 1.79

SpamBase SOM1
83.86 3.45

SOM2
85.72 2.55

SOM1!2
84.17 3.23 1.92

SOM2!1
83.59 2.41 1.59
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parameters allows the system to detect the important collaboration links and

directions and to avoid collaboration with irrelevant classi¯cation.

For the vertical collaboration experiments (Table 4), the size of all the maps is set

to 10� 10, except for the Isolet dataset whose map size is 5� 5.

For the Wdbc dataset, we note that the purity index of the ¯rst SOM map after

the collaboration has improved. Contrarily, the purity of the second SOM map after

the collaboration decreased. We also note that the quantization error of the ¯rst and

second map has improved after the collaboration. For the Isolet dataset, we do not

observe any improvement on the maps obtained after the collaboration compared

with that before. The purity of the maps and the quantization errors after

the collaboration are improved for the Madelon dataset. For the Spam dataset,

the quantization error has improved. For the vertical collaboration approach,

these results show that the purity of maps and the quantization error is not always

improved after collaborating the maps, and depends strongly on the relevance of

the collaborative map (the quality of the collaborative classi¯cation) and on the

con¯dence on this map (the collaboration parameter). This conclusion corresponds

to the intuitive understanding of the principle and to the consequences of such

cooperation.

5. Conclusion

The collaborative classi¯cation allows the interaction between the di®erent sources

of information for the purpose of revealing (detecting) the underlying structures and

the regularities from the datasets. It can be treated as a process of consensus building

where we search for a structure that is common to all the datasets. The impact of the

collaboration matrix (the collaboration con¯dence values) over the overall e®ect of

the collaboration is very important since in an unsupervised learning model there is

no information about the data structure. In this study we proposed a methodology to

learn the collaboration con¯dence parameters for both horizontal and vertical to-

pological approaches. The proposed horizontal learning approach is adapted for

collaboration between datasets that describe the same observations but with dif-

ferent variables, and in this case choosing the value of the collaboration con¯dence

becomes very important as the datasets are in di®erent feature spaces. Contrarily,

the vertical collaborative learning approach is adapted to the problem of collabo-

ration of several datasets containing the same variables but with di®erent observa-

tions. During the collaboration step, we do not need the datasets but only the results

of the distant classi¯cations. Thus, each site uses its dataset and the information

from other classi¯cations, which would provide a new classi¯cation that is as close as

possible to that which would be obtained if we had centralized the datasets. Both

proposed approaches have been validated on multiple databases and the experi-

mental results have shown very promising performance.

Several perspectives can be considered for this work as: Combining the horizontal

and the vertical collaborative approach in order to design a new collaborative hybrid
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approach; fusing all the classi¯cations obtained after the collaboration and building a

consensus classi¯cation for all the distant sites.
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