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In this paper, we propose a Collaborative Clustering method based on Variational Bayesian
Generative Topographic Mapping (VBGTM). To do so, we ¯rst propose a method that com-
bines VBGTM and Fuzzy c-means (FCM). Collaborative clustering is useful to achieve inter-
action between di®erent sources of information for the purpose of revealing underlying
structures and regularities within data sets. It can be treated as a process of consensus building
where we attempt to reveal a structure that is common across all sets of data. VBGTM was
introduced as a variational approximation of Generative Topographic Mapping (GTM) to
control data over¯tting. It provides an analytical approximation to the posterior probability of
the latent variables and the distribution of the input data in the latent space. It can be e®ec-
tively applied to visualize and explore properties of the data. But when the number of latent
points is large, similar units need to be grouped (i.e., clustered) to facilitate quantitative analysis
of the map and the data. We use FCM to determine the prototypes as well as the resultant
clusters and the corresponding membership functions of the input data, based on the latent
variables obtained from VBGTM. So, by combining the two algorithms, we develop a method
that can do visualization and clustering at the same time. We observe that the hybrid method
(F-VBGTM) performs very well in terms of many cluster-validity indexes.

Keywords: Collaborative clustering; fuzzy clustering; generative topographic mapping; varia-
tional inference.

1. Introduction

Cluster analysis divides data into groups (clusters) such that similar data objects

belong to the same cluster and dissimilar data objects to di®erent clusters. The

clustering problem has been addressed in many contexts and by researchers in many

disciplines; this re°ects its broad appeal and usefulness as one of the steps in ex-

ploratory data analysis. Fuzzy clustering algorithms are important members of the

family of clustering algorithms. Compared to hard clustering or crisp clustering,

fuzzy clustering can reveal the di®erences between data vectors more explicitly. This

can be noticed due to the role of fuzzy clustering in assigning vectors to clusters and
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determines a membership function that indicates how likely the data vector belongs

to a cluster. The most prominent fuzzy clustering algorithm is the fuzzy c-means

(FCM),5 a fuzzi¯cation of k-means.16 But FCM su®ers from the curse of di-

mensionality, it cannot visualize data if the dimension is bigger than three.

Besides the FCM algorithm, other techniques perform visualization and clustering

with membership, such as Generative Topographic Mapping (GTM).6,7 GTM was

proposed as a probabilistic counterpart to the Self-Organizing Maps (SOM).15 GTM is

mostly used for data visualization since it allows high dimensional data to bemodeled as

resulting fromGaussian noise added to sources in lower-dimensional latent space. But in

its basic formulation, the GTM is trained within the Maximum Likelihood (ML)

framework using the Expectation-Maximization (EM) algorithm, permitting data

over¯tting unless regularization is included. A Variational Bayesian approach of the

GTM (VBGTM) was introduced in Ref. 18 to endow the model with regularization

capabilities based on variational techniques. But when the number of latent points is

large, similar units need to be clustered to facilitate quantitative analysis of themap and

thedata.That'swhywepropose toextend theVBGTMtoa fuzzy clustering technique so

that visualization of clustering results is possible together with probabilistic clustering.

So far, clustering techniques described above operate on a single data set. Nowadays,

computing environments and technologies are more and more evolving towards a mo-

bile, ¯nely distributed, interacting, dynamic environment containing massive amounts

of heterogeneous, spatially and temporally distributed data sources. Inmany companies

data is distributed among several sites, i.e., each site generates its owndata andmanages

its own data repository. Analyzing these distributed sources requires distributed clus-

tering techniques to ¯nd global patterns representing the complete information. The

transmission of the entire local data set is often unacceptable because of performance

considerations, privacy and security aspects, and bandwidth constraints. Traditional

clustering algorithms, demanding access to complete data, are not appropriate for dis-

tributed applications. Thus, there is a need for distributed clustering algorithms in order

to analyze and discover new knowledge in distributed environments.

In this paper, we propose a newmethod for fuzzy clustering that combines VBGTM

and FCM and takes advantages of the features of these two techniques, we call it F-

VBGTM, then extend it to be applied on distributed data sets. In Sec. 2, we discuss the

related literature, more precisely the FCM, GTM and VBGTMmethods.Wemove on

to the description of the proposedmethod and its advantages in Sec. 3.We compare the

performance of the method with the standard FCM in Sec. 4. We apply our method to

Collaborative clustering in Sec. 5 and we terminate with a conclusion.

2. Literature Review

2.1. Fuzzy clustering

The FCM algorithm5 is one of the most widely used methods in fuzzy clustering. It is

based on the concept of fuzzy c-partition,20 summarized as follows.
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Let X ¼ fx1; . . . ;xNg be a set of given data, where each data point xnðn ¼
1; . . . ;NÞ is a vector in RD, U is a C �N matrix, and C be an integer, 2 � C < N.

Then, the fuzzy C-partition space for X is the set

Mfcn ¼ U 2 R
C�N : �cn 2 ½0; 1�;

XC
c¼1

�cn ¼ 1; 0 <
XN
n¼1

�cn < N

( )
; ð1Þ

where �cn is the membership value of xn in cluster cðc ¼ 1; . . . ;CÞ. The aim of the

FCM algorithm is to ¯nd an optimal fuzzy c-partition and corresponding prototypes

minimizing the objective function

JmðU ;V ;XÞ ¼
XN
n¼1

XC
c¼1
ð�cnÞmjjxn � �cjj2: ð2Þ

In Eq. (2), V ¼ ð�1; . . . ; �CÞ is a matrix of unknown cluster centres (prototypes;

seeds) �c 2 RD, jj�jj is the Euclidean norm, and m is a fuzzi¯er in ½1;1�, it in°uences
the membership values and is usually chosen to be two.

The cluster centres and the respective membership functions that solve the con-

strained optimization problem in (2) are given by the following equations:

�c ¼
PN

n¼1 ð�cnÞmxnPN
n¼1 ð�cnÞm

; 1 � c � C; ð3Þ

�cn ¼
XC
j¼1

jjxn � �cjj2
jjxn � �jjj2

 !
1=ðm�1Þ" #�1

; 1 � c � C; 1 � n � N : ð4Þ

Equations (3) and (4) constitute an iterative optimization procedure. The goal is

to iteratively improve a sequence of sets of fuzzy clusters until no further improve-

ment in Jm is possible.

An overview and comparison of di®erent fuzzy clustering algorithms is

available.17

2.2. The GTM standard model

GTM is de¯ned as a mapping from a low dimensional latent space RL (with L being

usually 1 or 2 for visualization purposes) onto the observed data space RD. The

mapping is carried through by a set of basis functions generating a constrained

mixture density distribution. It is de¯ned as a generalized linear regression model:

y ¼ yðz;WÞ ¼W�ðzÞ; ð5Þ
where y 2 RD, z 2 RL and � is a matrix consisting of M basis functions

ð�1ðzÞ; . . . ; �MðzÞÞ, introducing the non-linearity, W is a D�M matrix of adaptive

weights wdm that de¯nes the mapping. The standard de¯nition of GTM considers

spherically symmetric Gaussians as basis functions. To achieve computational

tractability, the prior distribution of z in latent space is constrained to form a uni-

form discrete grid of K centres, analogous to the layout of the SOM15 units, in
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the form:

pðzÞ ¼ 1

K

XK
i¼1

�ðz� ziÞ: ð6Þ

GTM can also be understood as a constrained mixture of Gaussians. The corre-

sponding yk of each latent variable zk represents the centre of a Gaussian density

function, which is the mean of the Gaussian distribution. Assuming that the ob-

served data set X consists of N i.i.d. data points xn, this leads to the de¯nition of a

complete likelihood of the form:

LðW ; �Þ ¼ ln
YN
n¼1

pðxnjW ; �Þ

¼
XN
n¼1

ln
1

K

XK
i¼1

pðxnjzi;W ; �Þ
( )

; ð7Þ

where yk ¼W�ðzkÞ are the reference vectors. The parameters W and � can be

optimized by ML using the EM algorithm.

By calculating the mean or mode of the posterior probabilities of the latent

variables, the distribution of input data can be visualized in the latent space.

This version of GTM uses the ML method to estimate its model parameters.

However, as Svens�en remarked in his PhD thesis,21 it is too susceptible to over¯t the

data. A regularized version of the GTM using the evidence approximation was in fact

introduced in that work. A Markov Chain Monte Carlo (MCMC) method using

Gibbs sampling,22 as well as a ¯rst approximation using a variational framework,

were applied to improve the parameter estimation of the GTM model in Ref. 23. In

Ref. 18, a full variational version for the GTM was presented based on the GTM with

a Gaussian process (GP) prior outlined in Ref. 7, to which a Bayesian estimation of

the parameters is added. We now show the importance of using the variational

approach for GTM.

2.3. Variational inference

The central idea of variational Bayesian inference8 is to introduce a set of distributions

over the parameters into themarginal likelihood, in such away that the computation of

the marginal likelihood pðXÞ ¼ R pðXj�Þpð�Þd� becomes tractable, � ¼ f�ig is the
set of parameters de¯ning the model. Variational Bayesian inference has quickly be-

come a popular way to learn otherwise intractable models (See Refs. 1, 10, 14). In the

context of Bayesian inference, this framework is known as variational Bayes.

The starting point of the variational Bayesian framework is the marginal likeli-

hood, which, in logarithmic form, can be expressed as follows:

ln pðXÞ ¼ ln
pðX;�Þ
pð�jXÞ ; ð8Þ
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where the model structureM is assumed to be implicit. At this point, a distribution q

over the parameters � can be introduced, which will be henceforth called variational

distribution, given that the log marginal likelihood does not depend on �:

ln pðXÞ ¼
Z

qð�Þ ln pðX;�Þ
pð�jXÞ d�: ð9Þ

After some mathematical transformations, Eq. (9) can be rewritten as:

ln pðXÞ ¼
Z

qð�Þ ln pðX;�Þ
qð�Þ d�þ

Z
qð�Þ ln qð�Þ

pð�jXÞ d�

¼ F ðqð�ÞÞ þDKL½qð�Þjjpð�jXÞ�; ð10Þ

where DKL½qð�Þjjpð�jXÞ� is the Kullback–Leibler (KL) divergence between the

variational and the posterior distributions. Given that KL divergence is a strictly

non-negative term, Fðqð�ÞÞ becomes a lower bound function on the log marginal

likelihood. As a result, the convergence of the former guarantees the convergence of

the latter:

ln pðXÞ � Fðqð�ÞÞ: ð11Þ
Thus, the ultimate goal in variational Bayesian inference is choosing a suitable

form for the variational distribution qð�Þ in such a way that FðqÞ can be readily

evaluated and yet which is su±ciently °exible that the bound is reasonably tight.

In the case of latent variable models, the latent or hidden variables Z can be easily

incorporated into the variational Bayesian framework as an additional set of model

parameters. In this manner, a prior distribution pðZÞ over the hidden variables will

be also required.

Taking as inspiration the EM algorithm,9 an e±cient variational Bayesian

expectation-maximization (VBEM) algorithm4 that could be applied to many

Statistical Machine Learning (SML) latent variable models can be de¯ned by

assuming independent variational distributions overZ and�, i.e., qðZ;�Þ ¼ qðZÞqð�Þ.
Thereby, the VBEM algorithm can be derived by maximization of F as follows:

VBE-Step:

qðZÞðnewÞ  argmax
qðZÞ

F ðqðZÞðoldÞ; qð�ÞÞ; ð12Þ

VBM-Step:

qð�ÞðnewÞ  argmax
qð�Þ

FðqðZÞðnewÞ; qð�ÞÞ: ð13Þ

In summary, variational Bayesian inference o®ers an elegant framework in which

approximate inference can be performed in a closed way, and which allows e±cient

Bayesian inference of the model parameters and hidden variables. Next section

applies these concepts to GTM to yield new powerful analytic methods.
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2.4. Variational Bayesian GTM

2.4.1. Bayesian formulation of GTM

The speci¯cation of a full Bayesian model of GTM can be obtained by de¯ning priors

over the parameters Y;Z and �. In Ref. 7, a prior for Y was proposed, the regression

function using basis functions is replaced by a smooth mapping carried out by a GP

prior, since the original GTM has a hard constraint imposed on the mapping from

latent space to the data space due to the ¯nite number of basis functions used. This

way the likelihood takes the form,

pðXjZ;Y; �Þ ¼ �

2�

� �
ND=2 YN

n¼1

YK
k¼1

exp � �

2
jjxn � ykjj2

� �� �
znk

; ð14Þ

where Z ¼ fzkng are binary membership variables complying with the restrictionPK
k¼1 zkn ¼ 1, and yk are the column vectors of a matrix Y and the centroids of

spherical Gaussian generators equivalent to the reference vectors of the GTM. The

prior de¯ned over Y is a GP prior de¯ned as:

pðYÞ ¼ ð2�Þ�KD=2jCj�D=2
YD
d¼1

exp � 1

2
yT
ðdÞC

�1yðdÞ

� �
; ð15Þ

where yðdÞ is each of the row vectors of the matrixY, andC is a matrix where each of

its elements is a covariance function de¯ned as:

Cði; jÞ ¼ Cðzi; zjÞ ¼ � exp � jjzi � zjjj2
2	2

� �
; i; j ¼ 1; . . . ;K; ð16Þ

and where hyperparameter � is usually set to a value of 1. The 	 hyperparameter

controls the °exibility of the mapping from the latent space to the data space. A

suitable choice for prior distributions will yield a tractable variational Bayesian

solution. Since zkn are de¯ned as binary values, a multinomial distribution can be

chosen for Z:

pðZÞ ¼
YN
n¼1

YK
k¼1


 zkn
kn ; ð17Þ

where 
kn is an hyperparameter controlling the distribution over each of zkn. Finally,

a Gamma distribution is chosen to be the prior over �:

pð�Þ ¼ �ð�jd�; s�Þ; ð18Þ

where d� and s� are the hyperparameters of the parameter �. A graphical repre-

sentation of the Bayesian GTM, including the hidden variables, parameters and

hyperparameters, is shown in Fig. 1.
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2.4.2. Variational Bayesian approach for GTM (VBGTM)

As described above, variational inference allows approximating the marginal log-

likelihood through Jensen's inequality:

ln pðXÞ � FðqðZ;�ÞÞ: ð19Þ
The function FðqðZ;�ÞÞ is a lower bound such that its convergence guarantees

the convergence of the marginal likelihood. The goal is choosing a suitable form for

the variational distribution F ðqðZ;�ÞÞ in such way that F ðqÞ can be readily evalu-

ated. We assume that the hidden membership variable Z and the parameters � are

i.i.d., i.e., qðZ;�Þ ¼ qðZÞqð�Þ. Thereby, a Variational EM algorithm can be derived4:

a VBE step as mentioned in Eq. (12) and a VBM step as in Eq. (13).

2.4.3. VBE step

The form chosen for the variational distribution qðZÞ is similar to that of the prior

distribution pðZÞ:

pðZÞ ¼
YN
n¼1

YK
k¼1

~
 zkn
kn ; ð20Þ

where the variational parameter ~
kn is given by:

~
kn ¼
exp � h�i2 hjjxn � ykjj2i
n o

PK
k 0¼1 exp � h�i2 hjjxn � yk 0 jj2i

n o ; ð21Þ

where the angled brackets h�i denote expectation with respect to the variational

distribution qðZ;�Þ.

2.4.4. VBM step

The variational distribution qð�Þ can be approximated to the product of the vari-

ational distribution of each one of the parameters if they are assumed to be i.i.d. If so,

Fig. 1. Graphical model representation of the Bayesian GTM.
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qð�Þ is expressed as:

qð�Þ ¼ qðYÞqð�Þ; ð22Þ

where the natural choises of qðYÞ and qð�Þ are similar to the priors pðYÞ and pð�Þ
respectively. Thus,

qðYÞ ¼
YD
d¼1
NðyðdÞj ~mðdÞ; ~�Þ; ð23Þ

pð�Þ ¼ �ð�j~d�; ~s�Þ: ð24Þ

Using these expressions in Eq. (13), the formulation for the variational para-

meters can be obtained:

~� ¼ h�i
XN
n¼1

Gn þC�1
 !�1

; ð25Þ

~mðdÞ ¼ h�i~�
XN
n¼1

xndhzni; ð26Þ

~d� ¼ d� þ
ND

2
; ð27Þ

~s� ¼ s� þ
1

2

XN
n¼1

XK
k¼1
hzknihjjxn � ykjj2i; ð28Þ

where zn corresponds to each column vector of Z and Gn is a diagonal matrix of size

K �K with elements hzni. The moments in the previous equations are de¯ned as:

hzkni ¼ ~
kn, h�i ¼
~d�

~s�
, and hjjxn � ykjj2i ¼ D~�kk þ jjxn � ~mkjj2.

Details of calculations can be found in Ref. 18.

3. Clustering of VBGTM Using FCM

VBGTM produces posterior probabilities for the centres of Gaussian components,

but it does not itself provide grouping function based on the latent variables and

posterior probabilities. FCM algorithm has grouping function and produces posterior

probabilities that indicate the membership of the data points to clusters, but it does

not provide visualization if the data dimension is larger than three. While VBGTM is

more robust than FCM when processing data set with large variations in probability

distributions, we propose to apply an extension to make use of VBGTM technique

for fuzzy clustering; we call the extension F-VBGTM.
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The goal of F-VBGTM is to train a VBGTM model and use FCM to help

VBGTM to cluster the input data into a desired number of clusters. The approach

consists of four consecutive steps, like follows:

(1) Train the VBGTM model

We train the model as described in Sec. 2.4. The output of the model include the

centres of the Gaussian components in the input space (Eq. 26), which can be

used as candidate seeds for FCM. The output includes also the posterior prob-

abilities (Eq. 21)

~
kn ¼ pðk=xnÞ; 1 � k � K; 1 � n � N ;

where xnðn ¼ 1; . . . ;NÞ are D-dimensional data vectors.

(2) Clustering ~mðdÞ using FCM

We apply FCM on the centres of Gaussians ~mðdÞ obtained by VBGTM. Suppose

there are C clusters. After clustering, the FCM algorithm produces two outputs:

. The cluster seeds: �c; 1 � c � C.

. The membership function for ~mðdÞ: pð�c=kÞ, 1 � k � K, 1 � c � C.

(3) Bayes Theorem

Now we have the membership of the centres of Gaussians to the cluster seeds �c,

we must calculate the membership of the original data xn to �c, we do it using

Bayes theorem.

�cn ¼ pð�c=xnÞ ¼
XK
k¼1

pð�c=kÞ � pðk=xnÞ:

(4) Adjusting

After Step 3, the original data vectors xn are assigned to the new clusters derived

from FCM. As a result, the centres have to be adjusted and the distances be-

tween data vectors and cluster centres have to be calculated. We use the fol-

lowing equations to do it, 8 c:

�c ¼
PN

n¼1 �cnxnPN
n¼1 �cn

and Dcn ¼ jjxn � �cjj2:

4. Experiments

As explained in the previous section, our hybrid method permits data visualization

and grouping at the same time. So we will apply it on several data sets with di®erent

size and complexity, then we will compare it with the original FCM to test its

performance. The chosen data sets are: Wine, Glass, Iris (all three are available from

the UC Irvine (UCI) machine learning repository)2 and Oil °ow data set (available

from Netlab package). We will use two internal validity indexes as a criteria to
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compare the two methods. Internal validation is based on the information intrinsic to

the data alone, without taking into account the real labels. The chosen indexes are:

Xie and Beni's index (XB) and Dunn's index (DI) calculated using Fuzzy Clustering

and Data Analysis Toolbox3 for Matlab.

4.1. Data sets

. Wine: This data set consists of 13 attributes and 179 cases, describing the results of

the chemical analysis of samples corresponding to three types of wine.

. Glass identi¯cation: A data frame with 214 observation containing examples of the

chemical analysis of 7 di®erent types of glass. The problem is to forecast the type of

class on basis of the chemical analysis. The study of classi¯cation of types of glass

was motivated by criminological investigation. At the scene of the crime, the glass

left can be used as evidence (if it is correctly identi¯ed!).

. Iris: This data set consists of 50 samples from each of three species of Iris

°owers (Iris setosa, Iris virginica and Iris versicolor). Four features were

measured from each sample: the length and the width of the sepals and petals, in

centimeters.

. Oil: This data set consisting of 12 attributes and 1,000 data points was arti¯cially

generated from the dynamical equations of a pipeline section carrying a mixture of

oil, water and gas, which can belong to one of the three equally distributed geo-

metrical con¯gurations. It was originally used in Ref. 6.

4.2. Cluster validation

As a criterion to validate our method and compare it with FCM we use two internal

indexes, since internal criteria are used to measure the goodness of a clustering

structure without referring to external information (i.e., real labels). We chose two

indexes that suit the fuzzy family algorithms. The indexes are the following:

. Xie and Beni's Index (XB): This index aims to quantify the ratio of the total

variation within clusters and the separation of clusters.24 A lower value of XB

indicates better clustering. It is equal to

XBðCÞ ¼
PC

c¼1
PN

n¼1 ð�cnÞmjjxn � �cjj2
N �minc;n jjxn � �cjj2

; ð29Þ

where C is the number of clusters.

. Dunn's Index (DI): This index is part of a group of validity indexes including the

Davies–Bouldin index, in that it is an internal evaluation scheme. The aim is to

identify if clusters are compact, with a small variance between members of the

cluster, and well separated. For a given assignment of clusters, a higher DI indi-

cates better clustering.
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DIðCÞ ¼ min
c2C

min
k2C;k 6¼c

minx2Cc;y2Ck
dðx;yÞ

maxk2Cfmaxx;y2C dðx;yÞg
� �� �

: ð30Þ

Figures 3 and 4 show the advantage of our method. First, at Level 1, we train a

VBGTM model to the data set, we chose 169 latent points (grid of 13� 13) for the

Wine data and 100 (10� 10) latent points for Iris data. After training the model, we

visualize data using the posterior mean projection,a results are shown for these two

data sets in Figs. 3 and 4. In Fig. 5, we visualize using posterior mode projection.b

Then, at Level 2, for each VBGTMmodel we ¯x a number C of clusters and we apply

Fig. 2. Illustration of the method, in Level 1 we train a VBGTM model and visualize data in the latent

space (2-dimensional) using posterior-mean projection. Then fuzzy clustering of VBGTM in Level 2 to

obtain C clusters.

(a) (b)

Fig. 3. Visualization of the Wine data set using posterior mean projection, with no labels (a) and with

labels obtained by applying F-VBGTM (b).

aThe mean projection is calculated as zmean
n ¼Pkhzknizk.

bThe mode projection is calculated as kmode
n ¼ argmaxkhzkni.
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(a) (b)

Fig. 4. Visualization of the Iris data set using posterior mean projection, with no labels (a) and with

labels obtained by applying F-VBGTM (b).

(a) (b)

Fig. 5. Visualization of the (a) Wine and (b) Iris data sets using posterior mode projection. Each square

represents a latent point of size proportional to the number of data points assigned to it.

Table 1. Clustering evaluation using

XB and DI for several data sets.

Dataset Index FCM F-VBGTM

Wine XB 0.785 0.716

DI 0.664 0.172
Iris XB 3.794 2.856

DI 0.034 0.053

Glass XB 1.131 0.692
DI 0.022 0.025

Oil XB 1.594 1.517

DI 0.051 0.048
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our method F-VBGTM to group the data, we assign every data point to a cluster (by

the highest membership degree) and we visualize the clusters into the same ¯gure

obtained by VBGTM's posterior mean projection. Results on data setsWine and Iris

are shown in Fig. 5(a) and 5(b).

As we mentioned above, a lower value of XB indicates better clustering. Table 1

shows that for all the data sets, F-VBGTM has a lower XB value than FCM, which

shows its better performance based on this index. As for DI index, a higher DI

indicates better clustering, this is the case for the data sets Iris and Glass.

5. Collaborative Clustering Using F-VBGTM

Nowadays, computing environments and technologies are more and more evolving

towards applications containing massive amounts of heterogeneous, spatially and

temporally distributed data sources. Collaborative Clustering11–13,19 intends to re-

veal the overall structure of distributed data (i.e., data residing at di®erent reposi-

tories) but, at the same time, complying with the restrictions preventing data

sharing. Generally speaking, two types of collaborative clustering are envisioned, the

horizontal mode and the vertical mode. The vertical mode assumes that each site

holds information on di®erent objects described by the same variables, i.e., in the

same feature space. The horizontal mode, on the other side, assumes that each

location holds information on the same set of objects but described in di®erent

feature spaces. The horizontal mode is more complicated since prototypes do not

have the same dimension, so de¯ning a distance between them is impossible.

We will give interest for the horizontal case in this paper. Suppose we have P data

sets coming from the same population, so the number of objects in each data set isN,

the number of Gaussian centres is K. Each data set is referred with an index

½ii�; ii ¼ 1; . . . ;P . The data sets do not have the same variables, so the dimension of

the feature space is di®erent from data set to another, let D½ii� be the dimension of

the data set ½ii�, so D½ii� 6¼ D½jj� if ½ii� 6¼ ½jj�.
In the horizontal case, as we mentioned above, the collaboration should be done

by exchanging the partition matrices between the sites.

Let us suppose that, after training the VBGTM model on the sites ½ii� and ½jj�
then applying the F-VBGTM algorithm on these two sites, the partition matrix U ½jj�
has been sent to the data site ½ii�. Now we can compute the new cluster prototypes

and partition matrix of site ½ii�, by optimizing the following objective function:

J ½ii; jj� ¼
XK
k¼1

XC
i¼1
ðuik½ii�Þ2jj ~mðkÞ � �i½ii�jj2

þ �½ii; jj�
XK
k¼1

XC
i¼1
ðuik½ii� � uik½jj�Þ2jj ~mðkÞ � �i½ii�jj2: ð31Þ

The second term in this equation is the term of collaboration, in which the distance

between partition matrices is included. By adding this term to the objective function
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and optimizing it, the membership degrees are supposed to be closer to each other.

The strength of the collaboration is controlled by the coe±cient of collaboration

�½ii; jj�, higher �½ii; jj� indicates stronger collaboration. Optimizing this objective

with respect to �i½ii� and uik½ii� leads to the following updated equations:

uik½ii� ¼
1PC

s¼1
jj ~mðkÞ��i½ii�jj2
jj ~mðkÞ��s½ii�jj2

1� 1

1þ �½ii; jj�
XC
s¼1

�½ii; jj�usk½jj�
" #

þ �½ii; jj�uik½jj�
1þ �½ii; jj� ; ð32Þ

�id½ii� ¼
PK

t¼1 u2
it½ii� ~mðtÞ þ �½ii; jj�PK

t¼1 ðuit½ii� � uit½jj�Þ2 ~mðtÞPK
k¼1 u2

ik½ii� þ �½ii; jj�PK
k¼1 ðuik½ii� � uik½jj�Þ2

; ð33Þ

for i ¼ 1; . . . ;C, k ¼ 1; . . . ;K and d ¼ 1; . . . ;D½ii�.
To show the e®ect of the Collaborative Clustering on the data sites we test the

algorithm on a split Waveform data set. We choose this data set because of its

structure, it contains 21 relevant variables and 19 noisy variables, and 5,000

observations. We split the data set into two subsets, the ¯rst subset contains the

relevant variables (of dimension 5;000� 21) and the second subset contains the noisy

variables (of dimension 5;000� 19). By doing this, we get distributed data on two

sites, data coming from same population. The ¯rst has good clustering results since

data are are separable when they are described by the relevant variable. The second

site has bad clustering results since its variables are noisy.

The clustering results by F-VBGTM on the two subsets of the Waveform data set

before collaborationare shown inFig. 6.Nowmoving to the collaborationphase, theway

we divided the data set, i.e., two subsets with same observations and di®erent variables,

permits us to apply the horizontal Collaborative Clustering. We expect that when we

(a) (b)

Fig. 6. Visualization of the two subsets of the Waveform data set using posterior mean projection, with

labels obtained using F-VBGTM before collaboration. We can see good clustering results on the ¯rst

subset (a). The results of clustering on the second subset of noisy variables are bad (b).
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send the partition matrix of the ¯rst subset (relevant) to the second subset (noisy) and

then we compute the new prototypes and partition matrix, the results must be better

comparing to what we got before the collaboration, because we send results from a good

clustered data site to a bad clustered one. The inverse is also true, i.e., when we send the

results of the second subset to the ¯rst one, this will deteriorate the results of the ¯rst

subset. The results of the clustering after the collaboration are shown in Fig. 7.

6. Conclusion

In this paper, we developed a new method for fuzzy clustering by combining the

VBGTM and the FCM. VBGTM is a variational approximation of GTM, which was

proposed as a solution to control data over¯tting. Then we used FCM to produce a

desired number of clusters based on the output of VBGTM. By combining the two

algorithms, we developed a method than can do data visualization and grouping at

the same time. Compared to the combination of K-means and SOM, the method

proposed in this paper provides membership functions to indicate the likelihood of a

data item belonging to a cluster. The membership function is capable of revealing

valuable information when performing clustering in applications such as customers

segmentation. Experiments showed that the proposed F-VBGTM method consis-

tently performed better than the FCM algorithm. Then we presented a consequence

of the proposed algorithm, by applying it to distributed data, more speci¯cally to

Collaborative Clustering.
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