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Abstract— The purpose of this article is to introduce a new
collaborative multi-view clustering approach based on a prob-
abilistic model. The aim of collaborative clustering is to reveal
the common underlying structure of data spread across multiple
data sites by applying clustering techniques. The strength of
the collaboration between each pair of data repositories is
determined by a fixed parameter. Previous works considered
deterministic techniques such as Fuzzy C-Means (FCM) and
Self-Organizing Maps (SOM). In this paper, we present a new
approach for the collaborative clustering using a generative
model, which is the Generative Topographic Mappings (GTM).
Maps representing different sites could collaborate without re-
course to the original data, preserving their privacy. We present
the approach for multi-view collaboration using GTM, where
data sets have the same observations but presented in different
feature space; i.e. different dimensions. The proposed approach
has been validated on several data sets, and experimental results
have shown very promising performance.

I. INTRODUCTION

COLLABORATIVE CLUSTERING [1] is an emerging
problem in data mining and only some work on this

subject have been made in the literature, [1] [2] [3] [4] [5].
In this paper, we assume that we have a group of data sets

distributed on different sites; data could be describing cus-
tomers of banking institutions, stores, medical organizations,
etc. The ultimate goal of every organization is to find out
some key relationships in its data set. This discovering could
be finest by taking into account the dependencies between
the different analysis carried out by various sites, in order to
produce an accurate view of the global hidden structure in
different data sets without sharing data between them.

While most of distributed data clustering (DDC) [6] [7]
form a consensus taking into account all their data sets, the
fundamental concept of collaboration is that the clustering
algorithms operate locally (namely, on individual data sets)
but collaborate by exchanging information about their find-
ings [1].

The data sets could include data about different individuals
described by the same variables; in this case a vertical
collaboration approach is proposed. The horizontal approach
for collaboration is used for data sets that describe the same
objects but with different variables. This approach can be
seen as a multi-view clustering where the treatment is done
on multi- represented data, i.e., the same set of objects
described by several representations (variables).

Collaborative clustering is divided into two phases: a local
phase and a phase of collaboration. The local phase would
apply a clustering algorithm based on prototypes, locally and

Mohamad Ghassany, Nistor Grozavu and Younès Bennani are with LIPN-
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independently on each database. The phase of collaboration
aims to collaborate each of the databases with clustering
findings associated to other databases obtained from the local
phase. Thus, as a result, we obtain on each site a clustering
results similar to the results that we would obtain if we had
ignored the constraint of confidentiality, i.e. to collaborate
databases themselves. At the end of the two phases, all the
local clustering will be enriched.

The quality of clustering after the collaboration depends
on the chosen method of clustering during the local phase.
Previous works on collaborative clustering were based on
deterministic models, such as fuzzy c-means (FCM) [1] and
self-organizing maps (SOM) [5].

In deterministic models, every set of variable states is
uniquely determined by parameters in the model and by sets
of previous states of these variables. Therefore, deterministic
models perform the same way for a given set of initial
conditions. Conversely, in a stochastic model, randomness
is present, and variable states are not described by unique
values, but rather by probability distributions. In this paper
we propose a collaborative multi-view (horizontal) cluster-
ing approach based on a probabilistic model, which is the
Generative Topographic Mapping (GTM) [8], an alternative
topographic clustering to SOM.

The rest of the paper is organized as follows: after
introducing the principle of the collaborative clustering in
Section 2, we present the principle of the GTM and its
EM (Expectation Maximization) algorithm in Section 3.
Our proposed Collaborative Multi-View Generative Model is
presented in section 4. In Section 5 we present the validation
of the proposed approach on different data sets. Finally the
paper ends with a conclusion and some future works for the
proposed method.

II. COLLABORATIVE CLUSTERING

Data Clustering is the main task of knowledge discovery in
data sets. Data in this case consists of a set of input vectors
without any corresponding target values. The goal in such
unsupervised learning problem may be to discover groups of
similar examples within the data, where it is called clustering,
or to determine the distribution of data within the input space,
known as density estimation, or to project the data from a
high-dimensional space down to two or three dimensions for
the purpose of visualization. Data Clustering aims to group
a set of objects in such a way that objects in the same group
(called cluster) are more similar to each other than to those
in other clusters.

In distributed data clustering (DDC), data are distributed
among several sites. The traditional solution to this problem
is to collect all the distributed data sets into one centralized



repository where the clustering of their union is computed
and transmitted back to the sites [6], [7]. This approach,
however, may be impractical due to the confidentiality of
data. The sites are not be allowed to share data due to legal
imposition, e.g. medical records and marketing secrets. DDC
techniques aggregate (or fuse) the clustering results into one
set to form a consensus, then apply a clustering technique
on this consensus taking into account all their data sets, and
taking in consideration the confidentiality of data. But in
some cases, due to some technical problems, clustering a
single large data set may not be feasible. So, a collaborative
approach would distribute the classification and merge the
different results.

Having distributed data sets on several different sites, the
problem is to cluster each of these data sets by considering
only the local data and the distant results of clusterings from
other data sets (data views), without sharing the data.

The fundamental concept of collaboration is that the
clustering algorithms operate locally (namely, on individual
data sets) but collaborate by exchanging information about
their findings [1] on different views (in the case of horizontal
collaboration). So, the data sites exchange information gran-
ules during the learning process, taking into consideration
the confidentiality of the data. Therefore, in collaborative
clustering a phase of collaboration is proposed, aiming to
collaborate each of the data views with all clustering results
associated to other data views obtained from a local phase
applied independently on each data view.

Figure 1 shows the difference between clustering by build-
ing a consensus and collaborative clustering.

Fig. 1. Building a consensus (left) vs Collaborative Clustering (right)

A topological collaborative clustering (for both horizontal
and vertical approaches) was proposed by Grozavu and Ben-
nani [9] inspired from the works of Pedrycz et al. [1] on the
c-means collaborative clustering. These approaches are based
on the Fuzzy c-means collaborative clustering and introduces
the concept of the self-organization firstly introduced by
Kohonen [10]. The SOM approaches are often used because
they allows clustering and visualization simultaneously for
different types of data. This technique can project the data on

discrete spaces that are usually in two dimensions. However,
the SOM algorithm have some disadvantages:
• Neighborhood-preservation is not guaranteed.
• Convergence of the prototypes is not guaranteed neither.
• There is no theory for initializing the parameters.

III. THE GENERATIVE TOPOGRAPHIC MAPPING MODEL

GTM was proposed by Bishop et al. [8], [11] as a
probabilistic alternative to SOM [10]. GTM is defined as
a mapping from a low dimensional latent space onto the
observed data space. The mapping is carried through by a set
of basis functions generating a constrained mixture density
distribution. It is defined as a generalized linear regression
model:

y = y(z,W ) = WΦ(z) (1)

where y is a prototype vector in the D-dimensional
data space, Φ is a matrix consisting of M basis functions
(φ1(z), . . . , φM (z)), introducing the non-linearity, W is a
D × M matrix of adaptive weights wdm that defines the
mapping, and z is a point in latent space. The standard def-
inition of GTM considers spherically symmetric Gaussians
as basis functions and is defined as:

φm(x) = exp

{
−‖x− µm‖

2

2σ2

}
(2)

where µm represents the centers of the basis functions and
σ - their common width.

Let D = (x1, . . . , xN ) be the data set of N data points.
A probability distribution of a data point xn ∈ <D is then
defined as an isotropic Gaussian noise distribution with a
single common inverse β variance:

p(xn|z,W, β) = N (y(z,W ), β)

=

(
β

2π

)D/2
exp

{
−β

2
‖xn − y(z,W )‖2

}
(3)

The distribution in x-space, for a given value of W , is
then obtained by integration over the z-distribution

p(x|W,β) =

∫
p(x|z,W, β)p(z)dz (4)

and this integral can be approximated by defining p(z) as
a set of K equally weighted functions on a regular grid,

p(z) =
1

K

K∑
i=1

δ(z − zk) (5)

So, the equation (4) becomes

p(x|W,β) =
1

K

K∑
i=1

p(x|zi,W, β) (6)

For a data set D, we can determine the parameter ma-
trix W , and the inverse variance β, using the maximum



likelihood. In practice it is convenient to maximize the log
likelihood, given by:

L(W,β) = ln

N∏
n=1

p(xn|W,β)

=

N∑
n=1

ln

{
1

K

K∑
i=1

p(xn|zi,W, β)

}
(7)

The EM Algorithm

The maximization of (7) can be regarded as a missing-
data problem in which the identity i of the component which
generated each data point xn is unknown. The EM algorithm
for this model is formulated as presented follows.

The posterior probabilities, or responsibilities, of each
Gaussian component i for every data point xn using Bayes’
theorem are calculated in the E-step of the algorithm in this
form:

rin = p(zi|xn,Wold, βold)

=
p(xn|zi,Wold, βold)∑K
i′=1 p(xn|z′i,Wold, βold)

=
exp{−β2 ‖xn −Wφ(zi)‖2}∑K
i′=1 exp{−β2 ‖xn −Wφ(z′i)‖2}

(8)

As for the M-step, we consider the expectation of the
complete-data log likelihood in the form:

E[Lcomp(W,β)] =

N∑
n=1

K∑
i=1

rin ln{p(xn|zi,W, β)} (9)

The parameters W and β are now estimated maximizing (9),
so the weight matrix W is updated according to:

ΦTGΦWT
new = ΦTRX (10)

where, Φ is the K × M matrix of basis functions with
elements Φij = φj(zi), R is the K×N responsibility matrix
with elements rin, X is the N × D matrix containing the
data set, and G is a K ×K diagonal matrix with elements

gii =

N∑
n=1

rin (11)

The parameter β is updated according to the expression:

1

βnew
=

1

ND

N∑
n=1

K∑
i=1

rin‖xn −Wnewφ(zi)‖2 (12)

In the proposed Collaborative Clustering approach we will
use the GTM and EM as a local step, and an adaptation of
the GTM to collaborate the distant maps as described in the
following section.

IV. COLLABORATIVE MULTI-VIEW GTM

According to the structure of data sets to collaborate,
there is a variety of detailed schemes, two of them are most
essential: horizontal (multi-view) and vertical collaboration.

More descriptively, given data sets X[1], X[2], . . . , X[P ]
where P denotes their number and X[ii] stands for the iith
data set (we adhere to the practice of using square brackets to
identify a certain data set). In horizontal clustering we have
the same objects that are described in different feature spaces,
dim(X[1]) 6= dim(X[2]) 6= . . . 6= dim(X[P ]), while
X[ii] 6= X[jj]. We note this case as multi-view description, .
In other words, these could be the same collection of patients
whose records are developed within each medical institution.
In collaborative multi-view clustering, the communication
platform is based on the partition matrix, posterior probabil-
ity in case of GTM. As we have the same objects, this type
of collaboration makes sense. The confidentiality of data has
not been breached: we do not operate on objects but on the
resulting granules/prototypes information (fuzzy relations,
that is, the posterior probability matrices). As this number
is far lower than the number of data, the low granularity of
these constructs moves us far from the original data.

Vertical clustering is complementary to horizontal clus-
tering, here the data sets are described in the same feature
space but deal with different observations. The vertical
collaborative clustering approach using GTM was presented
in [12].

In this paper, we propose an approach for multi-view
collaboration between several GTMs. Each data set (a view)
is clustered through a GTM. To simplify the formalism,
the maps built from various data sets will have the same
dimensions and the same structure. To collaborate GTMs,
we penalize the complete log-likelihood of the M-step, based
on [13], considering the term of penalization as a collabo-
ration term, which will penalizes the difference between the
posterior probabilities matrices of different data sets, since
prototypes don’t have same dimensions (they are represented
in different feature spaces) in the multi-view collaboration.

The main idea of the multi-view collaboration is that if an
observation from the ii-th data set is projected on cluster j
in the ii-th map, then that same observation in the jj-th data
set will be projected on the same cluster j of the jj-th map
or one of its neighboring clusters. In other words, clusters
that correspond to different maps should capture the same
observations.

Here we formulate the underlying optimization problem
implied by penalized EM clustering, and derive the proposed
algorithm. Assume there are P sets of data with different
views, each subset deals with the same patterns, the number
of elements in each subset is the same and is equal to N.
The collaboration between two subsets is established through
an interaction (confidence) coefficient α[jj]

[ii] which describes

the intensity of the collaboration. In general, α[jj]
[ii] is a non-

negative value. The higher the value of this parameter is, the
stronger the collaboration between the corresponding data
sets will be. In this paper, the collaboration is supposed to



be made between two data sets. Suppose that we seek to find
the GTM of the data set [ii] collaborating it with the [jj]
data set, in the E-step the posterior probabilities are defined
as follows:

rin = p(zi|xn,W [ii]
old , β

[ii]
old)

=
p(xn|zi,W [ii]

old , β
[ii]
old)∑K

i′=1 p(xn|z′i,W
[ii]
old , β

[ii]
old)

=
exp{−β

[ii]

2 ‖xn −W
[ii]φ[ii](zi)‖2}∑K

i′=1 exp{−β[ii]

2 ‖xn −W [ii]φ[ii](z′i)‖2}
(13)

where n ∈ {1, . . . , N}.
In the M-step, we find W [ii] and β[ii] maximizing:

Lver[ii] = E[Lcomp(W [ii], β[ii])]−

α
[jj]
[ii]

N∑
n=1

K∑
i=1

β[ii]

2
(r

[ii]
in − r

[jj]
in )2‖xn −W [ii]φ[ii](zi)‖2

(14)

The second term in the above expression makes the
clustering based on the iith subset “aware“ of other partitions.
It is obvious that if the structures in data sets are similar,
then the differences between the responsibility matrices tend
to be lower, and the resulting structures start becoming more
similar.

We derivate (14) w.r.t W [ii] and we put it equal to 0. This
leads to write the solution in the following form:

(
Φ[ii]TGΦ[ii] + α

[jj]
[ii] Φ[ii]TF [jj]Φ[ii]

)
W [ii]T

new =

Φ[ii]TRX + α
[jj]
[ii] Φ[ii]TH [jj]X

(15)

where, Φ is the K × M matrix of basis functions with
elements Φij = φj(zi), R is the K×N responsibility matrix
with elements rin, X is the N ×D[ii] matrix containing the
data set, G is a K ×K diagonal matrix, H [jj] is a K ×N
matrix, and F [jj] is K ×K diagonal matrix with elements:

gii =

N∑
n=1

r
[ii]
in (16)

h
[jj]
in = (r

[ii]
in − r

[jj]
in )2 (17)

f
[jj]
ii =

N∑
n=1

h
[jj]
in (18)

By derivating (14) w.r.t β[ii] and putting it equal to 0, we
obtain:

1

β
[ii]
new

=
1

ND[ii]

N∑
n=1

K∑
i=1

(r
[ii]
in +α

[jj]
[ii] h

[jj]
in )‖xn−W [ii]

newφ
[ii](zi)‖2

(19)
The proposed Collaborative Multi-View Clustering method

is presented in Algorithm 1.

Algorithm 1 The Collaborative Multi-View GTM algorithm

Fix the value of α[jj]
[ii] , a high value means strength collabo-

ration.
Local step:
for t = 1 to Niter do

For each BD[ii], ii = 1 to P :
Build the map using the classical GTM algorithm as

described in Section 2.
Collaboration step: For the collaboration of the [ii] map
with the [jj] map:
Update the parameters of the [ii]-th map using equations
15 and 19.

end for

V. EXPERIMENTAL RESULTS

To evaluate our proposed approach we applied our algo-
rithm on several data sets of different sizes and complex-
ity: Waveform, Wisconsin Diagnostic Breast Cancer (wdbc),
Glass and Spambase data set [14].

As criteria to validate the approach we used an internal
validity index and an external one. External validation is
based on previous knowledge about data, i.e real labels.
Internal validation is based on the information intrinsic to
the data alone. The internal criterion we used is the Davies-
Bouldin (DB) index. The external criterion is the map purity
(accuracy).

Purity index

The purity index of a map is equal to the average purity
of all the clusters of the map. Larger purity values indicate
better clustering.

Assuming we have K clusters cr, r = 1, . . . ,K. First, we
calculate the purity of each cluster, which is given by:

Pu(cr) =
1

|cr|
maxi(|cir|)

where |ck| is the total number of data associated to the cluster
ck, |cir| is the number of objects in cr with class label i.
In other words, Pu(cr) is a fraction of the overall cluster
size that the largest class of objects assigned to that cluster
represents. Therefore, the overall purity of the clustering
solution is obtained as a weighted sum of the individual
cluster purities and given as:

Purity =

K∑
r=1

|cr|
N
Pu(cr) (20)

where K is the number of clusters and N is the total number
of objects.

Davies-Bouldin index

The Davies-Bouldin (DB) index [15] is an internal validity
index aiming to identify sets of clusters that are compact and
well separated. It is calculated as follows:

A similarity measure Rij between clusters ci and cj is
defined basing on a measure of scatter within cluster ci,



called si, and a separation measure between two clusters,
called dij . Then Rij is defined as follows:

Rij =
(si + sj)

dij

Then, the DB index is defined as:

DBK =
1

K

K∑
i=1

max
j:i 6=j

Rij (21)

where K denotes the number of clusters.
The DBK is the average similarity between each cluster

ci, i = 1, . . . ,K and its most similar one. So, smaller value
of DB indicates a better clustering solution, thus having
minimum possible similarity with the clusters. In order to
compute the DB index of the obtained results, we applied
a Hierarchical Clustering on the prototypes matrix of the
map in order to cluster the map’s cells, in this way we
obtain a clustering of each data set (before and after the
collaboration). We performed several experiments on four
data sets from the UCI Repository [14] of machine learning
databases.

Data sets

• waveform data set: This data set consists of 5000
instances divided into 3 classes (Figure 2). The original
data set included 40 variables, 19 are all noise attributes
with mean 0 and variance 1. Each class is generated
from a combination of 2 of 3 ”base” waves.

Fig. 2. Waveform original data set, 3 classes of waves are shown.

• Wisconsin Diagnostic Breast Cancer (WDBC): This data
has 569 instances with 32 variables (ID, diagnosis, 30
real-valued input variables). Each data observation is
labeled as benign (357) or malignant (212).

• Glass Identification: Glass Identification data set was
generated to help in criminological investigation. At
the scene of the crime, the glass left can be used as
evidence, but only if it is correctly identified. This data
set contains 214 instances , 10 numeric attributes and
class name. Each instance has one of 7 possible classes.

• Spam Base: The SpamBase data set is composed of
4601 observations described by 57 features. Every fea-
ture describes an e-mail and its category: spam or not-
spam.

In the following, we will explain the results obtained
after applying Collaborative Multi-View GTM algorithm for
these data sets. The data sets mentioned above are unified
and need to be divided into subsets (or views) in order
to have distributed data ”scenarios”. We divided every data
set into two views (subsets) so that the algorithm operates
on different features considering, however, the same set of
individuals, i.e. Figure 3.

Fig. 3. Horizontal partitioning of data.

First, we applied the local phase, to obtain a GTM map
for every subset. We call the resultant maps GTM1 and
GTM2 respectively for the first and the second subset. The
size of all the used maps were fixed to 10 × 10 except for
the Glass data set whose map size is 5×5. Then we applied
the collaboration phase, in which we seek a new GTM for
the subset but collaborating it with the other subset. We
call GTM2→1 the map representing subset 1 and receiving
information (clustering results) from subset 2.

As described above, the waveform data set is composed
from two subsets of variables: the variables from 1 to 21
representing relevant characteristics, variables from 22 to 40
are noisy. This data structure allows us to divide the data set
in two views: first one containing relevant variables and the
second one containing only the noisy variables. Results of
local phases using GTM for these two views are presented
in Figures 4 and 5 respectively for first and second view.
These figures were obtained by projecting the data into two
dimensional space using Principal Component Analysis [16],
[17] applied on the waveform data set, but the color of the
points represent the class of each object obtained using GTM
and followed by a majority vote rule on the first subset
(Figure 4) and on the second noisy set respectively (Figure
5).

Note, that for a better understanding of the results, the
figures should be analyzed in a color mode.

The three classes of the waveform data set are well
represented and separated on Figure 4. While they are not in
Figure 5 due to the variables noisiness of this view.

After applying the collaboration to exchange the cluster-
ing information between all the maps without sharing data
between them, we obtained the following:



Fig. 4. waveform subset 1, relevant variables: labeling data using GTM1

Fig. 5. waveform subset 2, noisy variables: labeling data using GTM2

Fig. 6. waveform subset 1 after collaboration with subset 2: labeling data
using GTM2→1

Fig. 7. waveform subset 2 after collaboration with subset 1: labeling data
using GTM1→2

After the collaboration of the first view (relevant variables
of the waveform data set) with the noisy variables clustered
by GTM2 map, the purity index decreased from 86.25%
to 72.78% (Table I). Figure 7 shows the projection of data
by labeling them using the results of the collaborated map
GTM2→1, we can see that clusters are not well separated
comparing to what we have obtain before collaboration in
Figure 4.

Contrarily, by applying the collaboration in the opposite
direction, the purity index of the GTM1→2 map increased
from 38.47% to 57.12% compared to the GTM2. Results
are shown in Figure 6 in which we can see that clusters are
better separated now after collaboration of noisy variables
with relevant variables.

Results explained above are reasonable and show the
importance of collaboration. When a clustering of a set
described by relevant variables collaborate with a clustering
of a set containing noisy variables, the quality of clustering
decreases. While in the opposite case, sending clustering re-
sults of a set described by relevant variables to the clustering
of noisy set increases its quality.

As for the other data sets, we divided them all to two
views. We computed the purity index and the DB index
before and after collaboration and the results are shown in
Table I.

In most of the cases, we remark that the purity of the
map is getting higher or do not change drastically after
the collaboration and strongly depends on the relevance
of the collaborative map (the quality of the collaborative
classification). The same analysis can be made for the DB
index which decreases after the collaboration using a relevant
map. For example the DB index of the GTM2→1 for Glass
data set obtained using the information from GTM2 during
the learning of the GTM1 decreases from 1.28 to 0.97 (Table
I). This shows an amelioration of the clustering results.

This conclusion corresponds to the intuitive understanding
of the principle and to the consequences of such cooperation.
However, note that the goal was not to improve the clustering



TABLE I
EXPERIMENTAL RESULTS OF THE MULTI-VIEW COLLABORATIVE

APPROACH ON DIFFERENT DATA SETS

Dataset Map Purity (%) DB Index
Waveform
4000x21 GTM1 86.25 1.14
4000x19 GTM2 38.47 3.75

GTM1→2 57.12 1.73
GTM2→1 72.78 1.31

Glass
214x5 GTM1 92.32 0.74
214x5 GTM2 64.02 1.28

GTM1→2 73.42 1.05
GTM2→1 83.18 0.97

Wdbc
569x16 GTM1 94.07 0.97
569x16 GTM2 96.27 0.87

GTM1→2 95.88 0.9
GTM2→1 94.92 0.92

SpamBase
4601x28 GTM1 80.17 1.12
4601x28 GTM2 84.26 0.95

GTM1→2 83.35 0.98
GTM2→1 82.61 1.06

Fig. 8. Comparison of the purity obtained for Waveform subsets, before
and after the collaboration

accuracy but to take into account the distant information and
to build a new map using another view of the same data,
and this procedure can decrease sometimes the quality of
clustering which depends on the variables relevance of the
view to collaborate.

After doing the collaboration by applying the proposed
method, a next important step is to precise how the collabo-
ration can improve all the results, i.e., how every clustering
helps to improve the overall clustering, accepting good
clustering and rejecting bad clustering. This will be done
by estimating the coefficient of collaboration α

[jj]
[ii] during

the learning process. An example is shown in [3], [5] and
[4]. This coefficient will precise the confidence that data
set [ii] gives to data set [jj], i.e., a value indicating how
much data set [ii] trusts data set [jj], more it is high more
the confidence level is high. Depending on these estimated
values, we can form a consensus clustering. Here is the true
potential of Collaborative Clustering and why it is better
than standard distributed data clustering algorthims. It is like
forcing the data sets to discuss between them before forming
the consensus instead of forming it directly without taking

into account whether the results of clustering are good or
bad.

VI. CONCLUSION

In this study we proposed a methodology to apply a
Collaborative Multi-View Clustering on distributed data. The
proposed algorithm is based on GTM as a local phase of
clustering, and an extension of it in the collaboration step.
The Collaborative Multi-View learning approach is adapted
to the problem of collaboration of several data sets containing
the same observations described different variables. During
the collaboration step, we do not need the share the data
between sites but only the results of the distant clustering.
Thus, each site uses its data view and the information from
other clusterings, which would provide a new clustering that
is as close as possible to that which would be obtained if
we had centralized the data sets. We presented and approach
basing on probabilistic model to cluster the data, which is the
Generative Topographic Mappings. We presented the formal-
ism of Collaborative Clustering using an adapted extension
of this method. The approach has been validated on multiple
data sets and the experimental results have shown promising
performance.
Several perspectives can be considered for this work as:
to add a step in the collaboration phase to estimate the
value of the coefficients of collaboration; to merge all the
clustering results obtained after the collaboration and to build
a consensus for all the data views.
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