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Introduction to probability theory



Measurable space

Randomness (Uncertainty)

Fundamental example: consider the game of a die throw.

▶ Fundamental example ε : “throw a balanced die” ←− Action.
▶ Sample space: the set of all possible results of this random experiment

Ω = {1, 2, 3, 4, 5, 6}

▶ Events: In this random experiment, one can be interested in more complex events than just a simple result
of the experiment.

▶ The The Power set Ω, called P(Ω), is the set of all subsets of Ω.
▶ A family of subsets A of Ω. These subsets are called events. We say that the event A has occured if and

only if the result ω of Ω that has occurred belongs to A.
▶ σ-Algebra: We call σ-Algebra any family A of subsets of Ω satisfying:

1. Ω ∈A.
2. if A ∈A, then Ā ∈A.
3. if (An)n∈N is a sequence of elements in A, then

⋃
n∈N

An ∈A.

▶ (Ω,A) is a measurable space (or a Borel space).
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Notions on Events

▶ Let (Ω,A) be a measurable space:
• The set A is called σ-Algebra of events. The elements of A are called the events.
• The event Ω is called certain event. The event ∅ is called impossible event.

▶ Operations on events. Let A and B be two events:
• Ā is the complement event of A (we also note Ac). Ā = Ω \A.

barA occurs if and only if A does not occur.

• A∩B is the event «A and B».
A∩B occurs when both events occur.

• A∪B is the event «A or B».
A∪B occurs when at least one of the two events occurs.

▶ Mutually Exclusive Events: A and B are mutually exclusive if their simultaneous realization is impossible:
A∩B = ∅.

▶ Implication: A implies B means that if A occurs, then B also occurs: A ⊂ B.
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Probability Space

▶ Let (Ω,A) a measurable space. A probability function on (Ω,A), is any map

P : A→ R

such that:
1. ∀A ∈A,P(A) ⩾ 0.
2. P(Ω) = 1.
3. ∀(An)n∈N∗ ∈AN∗ , a familty of pairwise disjoint (mutually exclusive) events, we have:

P(
⋃

n∈N∗
An) =

+∞∑
n=1

P(An)

▶ The triplet (Ω,A,P) is called a probability space.
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Probability: Properties

1. P(∅) = 0.
2. P(A1 ∪A2) = P(A1) + P(A2) − P(A1 ∩A2).
3. If A1 and A2 are mutually exclusive, A1 ∩A2 = ∅, P(A1 ∪A2) = P(A1) + P(A2).
4. P(A1∪A2∪A3) = P(A1)+P(A2)+P(A3)−P(A1∩A2)−P(A1∩A3)−P(A2∩A3)+P(A1∩A2∩A3).
5. P(Ā) = 1 − P(A).
6. P(B \A) = P(B) − P(B∩A).
7. A ⊂ B⇒ P(A) ⩽ P(B).

Uniform probability on finite Ω

▶ Let Ω be a finite sample space. We say that P is the uniform probability on the measurable space
(Ω,P(Ω)) if:

∀ω,ω ′ ∈Ω, P(ω ′}) = P(ω ′})

One also says that there is equiprobability of elementary events.

▶ Let (Ω,P(Ω),P) be a finite probability space. If P is the uniform probability, then

∀A ∈A, P(A) =
Card(A)

Card(Ω)
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Conditional probability

▶ Let (Ω,A,P) be a probability space and B ∈A such that P(B) > 0. The map function PB defined on A

by:

PB(A) = P(A|B) =
P(A∩B)

P(B)
, ∀A ∈A

is a probability function on (Ω,A); it is called the conditional probability given B. It is the probability of
event A occurring given that event B has occurred.

▶ Remark: (A|B) is not an event! We use the notation P(A|B) for simplicity, but the notation PB(A) is
the correct one.

▶ Chain rule:
P(A∩B) = P(A|B)P(B) = P(B|A)P(A)

▶ Law of total probability:
• ∀A ∈A, P(A) = P(A∩B) + P(A∩ B̄)
• We call partition of Ω, a set of events that are pairwise disjoint and whose union is the sample space Ω. The

partition is said to be “countable” if its cardinality is at most equal to that of N.
• Let (Bn)n⩾0 a partition of Ω. We have:

∀A ∈A, P(A) =
∑
n⩾0

P(A∩Bn)

▶ Independence: Events A and B are independent iff P(A∩B) = P(A)P(B).
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Bayes’ formulae

First Bayes’ theorem
Let (Ω,A,P) a probability space. For all events A and B such that P(A) ̸= 0 and P(B) ̸= 0, we have:

P(B|A) =
P(A|B)P(B)

P(A)

Second Bayes’ theorem
Let (Ω,A,P) a probability space and (Bn)n⩾0 a partition of Ω s.t. for all n ⩾ 0 P(Bn) ̸= 0. We have for
all A ∈A s.t. P(A) ̸= 0

P(Bi|A) =
P(A|Bi)P(Bi)∑

n⩾0 P(A|Bn)P(Bn)
∀i ⩾ 0

Mohamad GHASSANY Introduction to probability theory 9 / 65



Real Random Variable



Concept of Real Random Variable

Definition
Let ε an experiment and (Ω,A,P) the associated probability space. . In many situations, one associates to
each result ω ∈Ω a real number denoted X(ω); In this way, one builds a map X : Ω→ R. Historically, ε
was a game and X représented the earning of a player.

Example: a die throw
A player throws a fair six faces dice and we observe the obtained number:

▶ If the result is 1,3 or 5, the player earns 1 euro.

▶ If the result is 2 or 4, the player earns 5 euros.

▶ If the result is 6, the player loses 10 euros.
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Concept of Real Random Variable

Analysis

▶ ε: “throw a fair die”.

▶ Ω = {1, 2, 3, 4, 5, 6}.

▶ A = P(Ω).

▶ P is the equiprobability on (Ω,A).

Let X the map function from Ω to R that associates to each result the corresponding earning.

So we have

▶ X(1) = X(3) = X(5) = 1

▶ X(2) = X(4) = 5

▶ X(6) = −10

We say that X is a random variable on Ω.
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Concept of Real Random Variable

One can ask what is the probability for the player to win 1 euro:

⇒ X(ω) = 1.

▶ this is the case if and only if ω ∈ {1, 3, 5}.

▶ The sought-for probability is therefore P({1, 3, 5}) = 1/2.

▶ Which can also be written as P(X = 1) = 1/2.

Thus, we will consider the event:

{X = 1} = {ω ∈Ω/X(ω) = 1} = {ω ∈Ω/X(ω) ∈ {1}} = X−1({1}) = {1, 3, 5}.

Similarly, we have:

▶ P(X = 5) = 1/3.

▶ P(X = −10) = 1/6.
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Concept of Real Random Variable

One can present the three previous probabilities in a table:

xi -10 1 5
pi = P(X = xi) 1/6 1/2 1/3

This is tantamount of considering a new sample space:

ΩX = X(Ω) = {−10, 1, 5}

equipped with the probability PX defined in the table above. This new probability is called the probability
distribution of X.

Notice that
P(

⋃
xi∈ΩX

{X = xi}) =
∑

xi∈ΩX

P(X = xi) = 1
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Plan: Discrete Random Variables

In this chapter:

▶ We treat the case where X(Ω) is countable.

▶ The random variable in this case is discrete.

▶ We define its probability law by its probability distribution.

▶ We will define the two main numerical characteristics of a discrete random variable:
• Expected value: characteristic of centrality (the mean).
• Variance: characteristic of dispersion.

▶ We will also define the couples of random variables.
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Discrete Random Variables



Probability law

Definition
We say that a real random variable X is discrete if the set of all possible values that X can take is finite or
countable.

If we suppose that the set X(Ω) of all possible values of X admits a smallest element x1. Then the discrete
real random variable X is completely defined by:

▶ The set X(Ω) of all possible values of X, sorted in ascending order: X(Ω) = {x1,x2, . . . ,xi, . . .} with
x1 ⩽ x2 ⩽ . . . ⩽ xi ⩽ . . ..

▶ The probability distribution defined on X(Ω) by

pi = p(xi) = P(X = xi) ∀ i = 1, 2, . . .

Remarks:

▶ B ⊂ R, P(X ∈ B) =
∑

i/xi∈B p(xi).
▶ P(a < X ⩽ b) =

∑
i/a<xi⩽b p(xi).

▶ p(xi) ⩾ 0 and
∑∞

i=1 p(xi) = 1.
▶ If the number of possible values of X is small enough, the probability distribution of X is often presented as

a table.
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Cumulative distribution function

Definition
Given a discrete random variable X, we call cumulative distribution function of X (or simply distribution
function), denoted FX, the function defined by: for any real a,

F(a) = P(X ⩽ a) =
∑

i/xi⩽a

P(X = xi)

The value FX(a) represents the probability that X takes a value smaller or equal to a.

Properties

1. It is a staircase function.

2. F(a) ⩽ 1 since it is a probability.

3. F(a) is continuous from the right.

4. lim
a→−∞F(a) = 0 and lim

a→∞F(a) = 1

The distribution function characterizes the distribution of X. In other words, if X and Y are two random
variables, we have FX = FY if and only if their probability distributions are the same.
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Distribution function and probabilities over X

All the computations of probabilities about X can be carried out using the distribution function. For example,

P(a < X ⩽ b) = F(b) − F(a) pour tout a < b

This is easier to understand if one writes the event {X ⩽ b} as a union of two incompatible events {X ⩽ a} and
{a < X ⩽ b}, Let

{X ⩽ b} = {X ⩽ a}∪ {a < X ⩽ b}

In this way,

P(X ⩽ b) = P(X ⩽ a) + P(a < X ⩽ b)

which proves the equality above.

Remark
One can compute the individual probabilities by:

pi = P(X = xi) = F(xi) − F(xi−1) pour 1 ⩽ i ⩽ n
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Distribution function and probabilities over X

Example
We play three times to “heads or tails” ⇒

▶ Ω = {P,F}3.

▶ card(Ω) = |Ω| = 23 = 8.

Let X the random variable “number of tails obtained” ⇒ X(Ω) = {0, 1, 2, 3}.

▶ Let’s calculate P(X = 1).

▶ X−1(1) = {(P,F,F), (F,P,F), (F,F,P)}.

⇒ P(X = 1) = 3
8

Using the same method we obtain the probability distribution of X:

k 0 1 2 3
P(X = k) 1/8 3/8 3/8 1/8
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Distribution function and probabilities over X

The distribution function X is therefore given by:

F(x) =



0 si x < 0
1/8 si 0 ⩽ x < 1
1/2 si 1 ⩽ x < 2
7/8 si 2 ⩽ x < 3
1 si x ⩾ 3

One can represent both the probability distribution and the distribution function of X in the same table:

k 0 1 2 3
P(X = k) 1/8 3/8 3/8 1/8
FX(x) 1/8 1/2 7/8 1

Mohamad GHASSANY Discrete Random Variables 19 / 65



Distribution function and probabilities over X

The graph of the distribution function is represented below:
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Figure 1: Distribution function
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Distribution function and probabilities over X

Here is another slightly different representation of the distribution function:
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Figure 2: Distribution function
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The indicator random variable

Definition
Let A an event. We call indicator random variable of the event A, the random variable X = 1A defined by:

X(ω) =

{
1 si ω ∈A

0 si ω ∈ Ā

Therefore:

▶ P(X = 1) = P(A) = p

▶ P(X = 0) = P(Ā) = 1 − p

The distribution function of the indicator random variable is therefore:

F(x) =


0 si x < 0
1 − p si 0 ⩽ x < 1
1 si x ⩾ 1
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The indicator random variable: Example

Example

▶ Let U an urn containing two white ball and three red balls.

▶ We randomly take one ball out of the box.

▶ Let A : “take one white ball out”.

▶ Let X be the indicator random variable of A.

Find the probability distribution and the distribution function of X.

The probability distribution of X is

k 0 1
P(X = k) 3

5
2
5

and its distribution function is:

F(x) =


0 si x < 0
3/5 si 0 ⩽ x < 1
1 si x ⩾ 1
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Moments of a discrete random
variable



Expected value

Definition
For a discrete random variable X with probability distribution p(.), we define the expected value of X, called
E(X), by

E(X) =
∑
i∈N

xip(xi)

In concrete terms, the expected value of X is the weighted mean of the values of X, the weights being the
probabilities associated to the values of X.

Examples

1. In the previous example where we play three times to “heads or tails”, the expected value of X is:

E(X) = 0× 1
8 + 1× 3

8 + 2× 3
8 + 3× 1

8 = 1.5

2. For the indicator random variable of A:

E(X) = 0× P(X = 0) + 1× P(X = 1) = P(A) = p

which means that the expected value of the indicator of an event A corresponds to the probability that A

occurs.
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Expected value of a function of a random variable

Theorem
Let X be a discrete random variable whose possible values are xi, i ⩾ 1, and denote by p(xi) the probability
that X = xi occurs. Then, for any real function g, we have

E(g(X)) =
∑
i

g(xi)p(xi)

Example
Let X be a random variable that can take three values {−1, 0, 1} with the following probabilities:

P(X = −1) = 0.2 P(X = 0) = 0.5 P(X = 1) = 0.3

Calculate E(X2).
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Expected value of a function of a random variable

Solution

First method: Let Y = X2. The probability distribution of Y is given by

P(Y = 1) = P(X = −1) + P(X = 1) = 0.5

P(Y = 0) = P(X = 0) = 0.5

So
E(X2) = E(Y) = 1(0.5) + 0(0.5) = 0.5

Second method: Using the theorem

E(X2) = (−1)2(0.2) + 02(0.5) + 12(0.3)

= 1(0.2 + 0.3) + 0(0.5) = 0.5

Remark

0.5 = E(X2) ̸= (E(X))2 = 0.01
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Linearity of the expected value

Properties

1. E(X+a) = E(X) +a, a ∈ R
results which follows from:∑

i

pi(xi +a) =
∑
i

pixi +
∑
i

api =
∑
i

pixi +a
∑
i

pi =
∑
i

pixi +a

2. E(aX) = aE(X), a ∈ R
to prove it, just write: ∑

i

piaxi = a
∑
i

pixi

3. E(X+ Y) = E(X) +E(Y), X and Y being two random variables.

All these three properties are summarised in the claim that the expected value is linear:

E(λX+µY) = λE(X) +µE(Y), ∀λ ∈ R, ∀µ ∈ R.
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Variance

Definition
Let X be a discrete random variable. We call variance of X, denoted V(X), the quantity defined by, when it
exists,

V(X) = E
[
(X−E(X))2]

Thus, the variance is the expected value of the square of the centered random variable X−E(X). The variance
can be interpreted as a measure of the dispersion of the possible values of X around its expected value.

Remark
Equivalently, the variance might be defined by the following formula:

V(X) = E(X2) −E2(X)

Indeed:

V(X) = E
[
X2 − 2XE(X) +E2(X)

]
= E(X2) −E[2XE(X)] +E[E2(X)]

= E(X2) − 2E2(X) +E2(X)
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Variance

Example
OLet us compute V(X) in the case where X is the number obtained when throwing a fair die.

Previously, we saw that E(X) = 7
2 . Moreover,

E(X2) =
∑
i

x2
ip(xi)

= 12
(

1
6

)
+ 22

(
1
6

)
+ 32

(
1
6

)
+ 42

(
1
6

)
+ 52

(
1
6

)
+ 62

(
1
6

)
=

(
1
6

)
(91) =

91
6

And therefore

V(X) = E(X2) −E2(X)

=
91
6 −

(
7
2

)2
=

35
12
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Variance

Properties

1. V(X) ⩾ 0

2. ∀a ∈ R, V(X+a) = V(X)

en effet:

V(X+a) = E
[
[X+a−E(X+a)]2

]
= E

[
[X+a−E(X) −a]2

]
= E

[
[X−E(X)]2

]
= V(X)

3. ∀a ∈ R, V(aX) = a2V(X)

en effet:

V(aX) = E
[
[aX−E(aX)]2

]
= E

[
[aX−aE(X)]2

]
= E

[
a2 [X−E(X)]2

]
= a2[E [X−E(X)]2

]
= a2V(X)
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Standard deviation

Definition
Let X be a discrete random variable. The square root of the variance is called the standard deviation of X
and is denoted

σX =
√

V(X)

σX has the same physical units as the random variable X.

▶ The standard deviation allows to measure the dispersion of a set of data.

▶ The smaller sigma is, the closer to each other the values of the data are.

▶ Example: the dispersion of the grades in an exam. The smaller sigma is, the more homogeneous the class is.

▶ - Expected value and standard deviation are linked through Bienaymé-Tchebychev inequality .
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Bienaymé-Tchebychev inequality

Theorem
Let X a random variable of expected value µ and variance σ2. For all ε > 0, We have:

P (|X−E(X)| ⩾ ε) ⩽
σ2

ε2

Remark
This inequality can be written in a slightly different fashion. Let k = ε/σ.

P (|X−E(X)| ⩾ kσ) ⩽
1
k2

Importance
This inequality relates the probability for X to deviate from its expected value E(X) to its variance, which is
precisely an indicator of the dispersion around the expected value. The inequality makes quantitatively precise
the statement “the smaller the variance is, the less likely it is to find values far away from the expected value”.
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Centred and non-centred moments

Definition
We call non centered moment of order r ∈ N∗ of X the quantity, when it exists:

mr(X) =
∑
i∈N

xr
ip(xi) = E(Xr).

Definition
The centered moment of order r ∈ N∗ the quantity, when it exists:

µr(X) =
∑
i∈N

pi [xi −E(X)]r = E [X−E(X)]r .

Remark
The first moments are:

▶ m1(X) = E(X), µ1(X) = 0.

▶ µ2(X) = V(X) = m2(X) −m2
1(X).
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Two Random Variables



Two Discrete Random Variables

So far, we have dealt with one random variable. However, it is often necessary to consider events related to two
variables simultaneously, or even to more than two variables.

Definition
Let X and Y two discrete random variables, defined on probability space (Ω,A,P) and that
X(Ω) = {x1,x2, . . . ,xl} and Y(Ω) = {y1,y2, . . . ,yk}, l and k ∈ N.

The probability law of (X,Y) is defined by joint probabilities:

pij = P(X = xi;Y = yj) = P({X = xi}∩ {Y = yj})

We have

pij ⩾ 0 et
l∑

i=1

k∑
j=1

pij = 1

The pair (X,Y) is called two dimensional random vector and can have l× k valeurs.
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Joint probability distribution table

The probabilities pij can be presented in a two dimensional table than we call joint probability distribution table:

Table 1: Joint probability distribution table

X\Y y1 y2 . . . yj . . . yk

x1 p11 p12 p1j p1k
x2 p21 p22 p2j p2k
...
xi pi1 pi2 pij pik

...
xl pl1 pl2 plj plk

In the header we have the possible values of Y and in the first column the possible values of X. The probability
pij = P(X = xi;Y = yj) is at the intersection of ith line and jth column.
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Example: pair of random variables

Example
Three balls are drawn at random from an urn containing 3 red, 4 white and 5 black balls. X and Y are
respectively the number of red and white balls drawn. Determine the joint probability distribution of the pair
(X,Y).

Solution

▶ ε: “draw 3 balls from an urn containing 12 balls”.

▶ |Ω| = C3
12 = 220.

▶ X(Ω) = {0, 1, 2, 3} and Y(Ω) = {0, 1, 2, 3}.

▶ p(X = 0,Y = 0) = p(0, 0) = C3
5/C

3
12 = 10

220 .

▶ p(0, 1) = C1
4C

2
5/C

3
12 = 40

220 .

▶ p(1, 0) = C1
3C

2
5/C

3
12 = 30

220 .
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Example: pair of random variables

Example
Three balls are drawn at random from an urn containing 3 red, 4 white and 5 black balls. X and Y are
respectively the number of red and white balls drawn. Determine the joint probability distribution of the pair
(X,Y).

Solution

Table 2: Joint probability distribution table

X\Y 0 1 2 3

0 10
220

40
220

30
220

4
220

1 30
220

60
220

18
220 0

2 15
220

12
220 0 0

3 1
220 0 0 0
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Marginal Probability Distributions

When we know the joint distribution of the random variables X and Y, we can also look at the probability
distribution of X alone and Y alone. These are the marginal probability distributions.

▶ Marginal distribution of X:

pi. = P(X = xi) = P[{X = xi}∩Ω] =

k∑
j=1

pij ∀ i = 1, 2, . . . , l

▶ Marginal distribution of Y:

p.j = P(Y = yj) = P[Ω∩ {Y = yj}] =

l∑
i=1

pij ∀ j = 1, 2, . . . ,k

We can calculate the marginal distributions directly from the table of the joint distribution.
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Marginal Probability Distributions

Table 3: Joint distribution table with marginal distributions

X\Y y1 y2 . . . yj . . . yk Marginal of X

x1 p11 p12 p1j p1k p1.

x2 p21 p22 p2j p2k p2.

...

xi pi1 pi2 pij pik pi.

...

xl pl1 pl2 plj plk pl.

Marginal of Y p.1 p.2 p.l p.k 1

Mohamad GHASSANY Two Random Variables 39 / 65



Example: Marginal Probability Distributions

Example
Three balls are drawn at random from an urn containing 3 red, 4 white and 5 black balls. X and Y are
respectively the number of red and white balls drawn. Determine the joint probability distribution of the pair
(X,Y).

Solution

Table 4: Joint distribution table

X\Y 0 1 2 3 pi. = P(X = xi)

0 10
220

40
220

30
220

4
220

84
220

1 30
220

60
220

18
220 0 108

220

2 15
220

12
220 0 0 27

220

3 1
220 0 0 0 1

220

p.j = P(Y = yj)
56
220

112
220

48
220

4
220 1

Mohamad GHASSANY Two Random Variables 40 / 65



Conditional Probability

Definition
For each value yj of Y such that p.j = P(Y = yj) ̸= 0 we can define the conditional distribution of X given
Y = yj by

pi/j = P(X = xi/Y = yj) =
P(X = xi;Y = yj)

P(Y = yj)
=

pij

p.j
∀i = 1, 2, . . . , l

Same for Y given X = xi:

pj/i = P(Y = yj/X = xi) =
P(X = xi;Y = yj)

P(X = xi)
=

pij

pi.
∀j = 1, 2, . . . ,k
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Independence of random variables

Definition
We say that two random variables are independent iff

P(X = xi;Y = yj) = P(X = xi)P(Y = yj) ∀ i = 1, 2, . . . , l and j = 1, 2, . . . ,k

One demonstrates that

P({X ∈A}∩ {Y ∈ B}) = P({X ∈A})P({Y ∈ B}) ∀ A and B ∈A

Properties
Let two random variables X and Y,

1. E(X+ Y) = E(X) +E(Y)

2. If X and Y are independent so E(XY) = E(X)E(Y). But the reciprocal is not always true.

Mohamad GHASSANY Two Random Variables 42 / 65



Covariance

Definition
Let two random variables X and Y. The covariance of X and Y, when it exists, is

Cov(X,Y) = E[(X−E(X))(Y −E(Y))] =
∑
i

∑
j

(xi −E(X))(yj −E(Y))pij

that we can calculate using the formula

Cov(X,Y) = E(XY) −E(X)E(Y)

Properties

▶ Cov(X,Y) = Cov(Y,X)

▶ Cov(aX1 + bX2,Y) = aCov(X1,Y) + bCov(X2,Y)

▶ V(X+ Y) = V(X) +V(Y) + 2Cov(X,Y)

▶ If X and Y are independant so
• Cov(X,Y) = 0 (the reciprocal is not always true)
• V(X+ Y) = V(X) +V(Y) (the reciprocal is not always true)
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Linear Correlation (Correlation of Spearman)

Definition
The correlation between X and Y is defined by

ρ = ρ(X,Y) =
Cov(X,Y)√
V(X)V(Y)

=
Cov(X,Y)

σXσY

We can demonstrate that

−1 ⩽ ρ(X,Y) ⩽ 1

Interpretation of ρ

▶ The correlation coefficient is a measure of the degree of linearity between X and Y.

▶ Values of rho close to 1 or −1 indicate an almost rigorous linearity between X and Y.

▶ Values of rho close to 0 indicate the absence of any linear relationship.

▶ When ρ(X,Y) is positive, Y tends to increase if X does the same.

▶ When ρ(X,Y) < 0, Y tends to decrease if X increases.

▶ If ρ(X,Y) = 0, we say that these two random variables are uncorrelated.Mohamad GHASSANY Two Random Variables 44 / 65



Linear correlation
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Uniform distribution U(n)



Uniform distribution

Definition
A random variable X has a discrete uniform distribution if each of the n values in its range, say,
x1,x2, . . . ,xn, has equal probability. Then:

P(X = xi) =
1
n

∀i ∈ {1, . . . ,n}

We say X ∼ U(n).

Example
The distribution of the numbers obtained at the throw of the dice (if it is fair) follows a uniform distribution
whose probability distribution is the following:

xi 1 2 3 4 5 6
P(X = xi)

1
6

1
6

1
6

1
6

1
6

1
6
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Moments of uniform distribution

Particular case
In the particular case of a discrete uniform distribution where each value of the random variable X corresponds
to its rank, i.e. xi = i ∀i ∈ {1, . . . ,n}, we have:

E(X) =
n+ 1

2 et V(X) =
n2 − 1

12

Demonstration
n∑

i=1
i =

n(n+ 1)
2 et

n∑
i=1

i2 =
n(n+ 1)(2n+ 1)

6 .

Example
The example of the throw of the dice: we can directly calculate the moments of X:

E(X) =
6 + 1

2 = 3.5 et V(X) =
62 − 1

12 =
35
12 ≃ 2.92.
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Bernoulli distribution B(p)

Indicator random variable
Let A an event; the indicator random variable of A, defined by X = 1A, is:

X(ω) = 1A(ω) =

{
0 si ω ∈ Ā

1 si ω ∈A

So X(Ω) = {0, 1} with:

P(X = 1) = P{ω ∈Ω/X(ω) = 1} = P(A) = p

P(X = 0) = P{ω ∈Ω/X(ω) = 0} = P(Ā) = 1 − P(A) = q

avec p+q = 1

Definition
We say X follows a Bernoulli distribution of parameter p = P(A), we write X ∼ B(p). A Bernoulli
distribution is associated to “Bernoulli’s event”, which is a random experience having two possibilities:
success (X = 1) or fail (X = 0).
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Bernoulli distribution B(p)

Bernoulli’s Distribution function

F(x) =


0 si x < 0
1 − p si 0 ⩽ x < 1
1 si x ⩾ 1.

Expected value

E(X) = 1× P(A) + 0× P(Ā) = P(A) = p

Variance

V(X) = E(X2) −E2(X) = p− p2 = p(1 − p) = pq

because
E(X2) = 12 × P(A) + 02 × P(Ā) = P(A) = p
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Binomial distribution B(n,p)

▶ Described for the 1st time by Isaac Newton in 1676 and demonstrated for the 1st time by the swiss
mathematician Jacob Bernoulli in 1713.

▶ Binomial distribution is one most frequently used probability distributions in applied statistics.

▶ n independant Bernoulli events.

▶ Each has p as probability of success and 1 − p probability of fail.

A A Ā A Ā . . . Ā A A

S S E S E . . . E S S

▶ X = the number of success on all n events.

▶ X depends of two parameters n and p.
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Binomial distribution B(n,p)

S S E S E . . . E S S

▶ X = the number of success on all n events.

▶ X(Ω) = {0, 1, . . . ,n}

P(X = k) =

(
n

k

)
pk(1 − p)n−k 0 ⩽ k ⩽ n

▶
(
n
k

)
is the number of all samples of size n containing exactly k successes, of probability pk, order is not

counted, and n− k fails, of probability (1 − p)n−k.

▶ We write X ∼ B (n,p).

Remark
A Birnoulli random variable is a Binomal variable of parameters (1,p).

X ∼ B(p) ⇐⇒ X ∼ B(1,p)
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Pascal’s triangle & Binomial theorm

Pascal’s triangle (
n

k

)
=

(
n− 1
k− 1

)
+

(
n− 1
k

)
∀n ⩾ 1 et 1 ⩽ k ⩽ n− 1

n = 0: 1

n = 1: 1 1

n = 2: 1 2 1

n = 3: 1 3 3 1

n = 4: 1 4 6 4 1

Binomial theorm

(x+ y)n =

n∑
k=0

(
n

k

)
xn−kyk

n∑
k=0

P(X = k) =

n∑
k=0

(
n

k

)
pk(1 − p)n−k = [p+ (1 − p)]n = 1
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Binomial distribution B(n,p)

Example
We flip five coins. The results are supposed to be independent. What is the probability distribution of X who
is thenumber of heads.

Solution

▶ X = nombre de piles (succès).

▶ n = 5.

▶ p = 1/2.

▶ X ∼ B(5, 1
2 ).

▶ X(Ω) = {0, 1, . . . , 5}

▶ P(X = 0) =
(5

0
)( 1

2
)0(1 − 1

2
)5−0

= 1
32

▶ P(X = 1) =
(5

1
)( 1

2
)1(1 − 1

2
)4

= 5
32

▶ P(X = 2) =
(5

2
)( 1

2
)2(1 − 1

2
)3

= 10
32

▶ P(X = 3) =
(5

3
)( 1

2
)3(1 − 1

2
)2

= 10
32

▶ P(X = 4) =
(5

4
)( 1

2
)4(1 − 1

2
)1

= 5
32

▶ P(X = 5) =
(5

5
)( 1

2
)5(1 − 1

2
)0

= 1
32
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Moments of Binomial distribution

If X ∼ B(n,p) so E(X) = np and V(X) = np(1 − p)

demonstration

1st method: We assigne to each i, 1 ⩽ i ⩽ n, a Bernoulli random variable

1A = Xi =

{
1 if A is realized
0 if not

So we write: X =
∑n

i=1 Xi = X1 +X2 + . . . +Xn

Then

E(X) = E

(
n∑

i=1
Xi

)
=

n∑
i=1

E(Xi) = np

et

V(X) = V

(
n∑

i=1
Xi

)
=

n∑
i=1

V(Xi) = np(1 − p)

because Xi are indenpendent.
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Moments of Binomial distribution

2nd method: Direct calculation.

▶ E(X) =
∑n

k=0 k
(
n
k

)
pk(1 − p)n−k = . . . = np

▶ V(X) = E(X2) −E2(X)

▶ To get E(X2) we go through E[X(X− 1)].

▶ V(X) = E(X2) −E2(X) = E[X(X− 1)] +E(X) −E(X2)

▶ E[X(X− 1)] =
∑n

k=0 k(k− 1) n!
k!(n−k)!p

k(1 − p)n−k = . . . = n(n− 1)p2

▶ V(X) = n(n− 1)p2 +np− (np)2 = np(1 − p)
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Binomial distribution B(n,p)
Example
The number of heads after n coin flips follows a Binomial distribution B (n, 1/2):

P(X = k) =

(
n

k

)(
1
2

)k (1
2

)n−k

=

(
n
k

)
2n , 0 ⩽ k ⩽ n

with E(X) = n/2 and V(X) = n/4.

Example
The number N of red balls appearing in n draws with replacement from an urn containing two red, three
green and one black follows a Binomial distribution B (n, 1/3):

P(N = k) =

(
n

k

)(
1
3

)k (2
3

)n−k

=

(
n

k

)
2n−k

3n , 0 ⩽ k ⩽ n

with E(X) = n/3 and V(X) = 2n/9.

Remark
If X1 ∼ B (n1,p) et X2 ∼ B (n2,p), X1 and X2 being indenpendent, so X1 +X2 ∼ B (n1 +n2,p). This
results from the definition of a Binomial distribution since we sum up here the result of n1 +n2 independent
events.
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Poisson distribution P(λ)

Definition
A random variable X follows a Poisson distribution of parameter λ > 0 if it is defined on N and

P(X = k) = e−λ λ
k

k! , k ∈ N

This distribution depends on only one real positive parameter λ, we write X ∼ P(λ).

Remark

ex =

+∞∑
i=0

xi

i!

So

∞∑
k=0

P(X = k) =

∞∑
k=0

e−λ λ
k

k! = e−λ
∞∑

k=0

λk

k! = e−λeλ = 1
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Moments of Poisson distribution

If X ∼ P(λ) So E(X) = λ and V(X) = λ

Expected value

E(X) =

∞∑
k=0

kP(X = k)

= . . .

= λ.

Variance

▶ First we calculate E(X2) =
∑∞

k=0 k
2P(X = k) = . . . = λ(λ+ 1).

Then

V(X) = λ(λ+ 1) − λ2 = λ
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Poisson distribution P(λ)

Example

▶ X = number of laptops sold by day in a shop.

▶ Suppose that X ∼ P(5).

▶ The probability of solding 5 laptops by day is

P(X = 5) = e−5 55

5! = e−5 ≃ 0.1755

▶ The probability of solding at least 2 laptops is

P(X ⩾ 2) = 1 −

(
e−5 50

0! + e−5 51

1!

)
≃ 0.9596

▶ The aveage number of laptops sold by day is 5 since E(X) = λ = 5.

Properties
If X and Y are two indenpendent random variable of Poisson distribution, X ∼ P(λ) and Y ∼ P(µ), Then
their sum is also Poisson: X+ Y ∼ P(λ+µ).
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Approximation of Binomial distribution

If n→∞ and p→ 0 alors X : B(n,p) ∼ P(λ)

Remark
A good approximationis obtained if n ⩾ 50 and np ⩽ 5.

In this context, the Poisson distribution is often used to model the number of successes when an experiment
with a very low chance of success is repeated a very large number of times.

Applications of Poisson distribution

▶ The number of persons over 100 years in a community.

▶ The number of fake phone numbers dialed in one day.

▶ The number of customers entering a given post office in one day.

▶ The number of α particles emitted by a radioactive material during a certain period of time.

The variables in these examples are approximately Poisson.
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Geometric distribution G(p)

▶ ε : “Repeat a Bernoulli event until the first success”.
▶ Example:

Ā Ā Ā Ā Ā . . . Ā Ā A

E E E E E . . . E E S

▶ Each trial has p as probability of success and 1 − p as probability of fail.
▶ X =“number of events”.

E E E E E . . . E E︸ ︷︷ ︸
k−1

S

▶ X(Ω) = N∗ = {1, 2, 3, . . .}. We say X ∼ G(p).
▶ ∀k ∈ N∗ P(X = k) = (1 − p)k−1p

▶ Attention: Sometimes X = “number of events until having the first success”. In this case X(Ω) = N. We
say X ∼ G(p) on N.

▶ This distribution is often used to model lifetimes, or waiting time, when the time is measured in discrete
way (number of days for example).

▶ Série entière :
∑∞

k=0 x
k = 1/(1 − x) pour |x| < 1

▶
∑∞

k=1 P(X = k) =
∑∞

k=1(1 − p)k−1p = p
∑∞

j=0(1 − p)j
∑∞

k=1(1 − p)k−1p = p
∑∞

j=0(1 − p)j =

p 1
1−(1−p) = 1
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Moments of Geometric distribution

Expected value

▶ E(X) =
∑∞

k=1 kP(X = k) =
∑∞

k=1 kp(1 − p)k−1 = p
∑∞

k=1 k(1 − p)k−1

▶ Power series:
∑∞

k=0 x
k = 1/(1 − x) pour |x| < 1

▶ 1st derivative:
∑∞

k=1 kx
k−1 = 1/(1 − x)2

▶ So E(X) = p
[1−(1−p)]2 = 1

p

In other words, if independent trials with probability p of success are performed until the first success occurs,
the expected number of trials needed is equal to 1/p. For example, the expected number of throws of a
balanced die that it takes to get the value 1 is 6.
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Moments of Geometric distribution

Variance of Geometric distribution

▶ V(X) = E(X2) −E2(X) = E[X(X− 1)] +E(X) −E2(X). While,

E[X(X− 1)] =
∞∑

k=2
k(k− 1)p(1 − p)k−1

= p(1 − p)

∞∑
k=2

k(k− 1)(1 − p)k−2

▶ 1st derivative of Power series:
∑∞

k=1 kx
k−1 = 1/(1 − x)2

▶ 2nd derivative of Power series:
∑∞

k=2 k(k− 1)xk−2 = 2/(1 − x)3

▶ So E[X(X− 1)] = 2p(1−p)
[1−(1−p)]3 =

2(1−p)
p2

▶ Then V(X) = E[X(X− 1)] +E(X) −E2(X) = 1−p
p2 .
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Negative Binomial distribution
BN(r,p)



Negative Binomial distribution BN(r,p)

▶ ε : “Repeat a Bernoulli event until r successes”.
▶ Example with r = 3:

Ā A Ā Ā Ā A Ā Ā A

E S E E E S E E S

▶ But we can obtain r successes in other ways:

S E E E E E S E S

E E E E S E S E S

▶ Each trial has p as probability of success and 1 − p as probability of fail.
▶ Let X =“number of trails to obtain this result”.

r−1succèsandk−r échecs︷ ︸︸ ︷
E S E E E S E E S︸ ︷︷ ︸

X=k

▶ X(Ω) = {r, r+ 1, r+ 2, . . .}. We say X ∼ BN(r,p).
▶ ∀k ∈ X(Ω),

P(X = k) =

(
k− 1
r− 1

)
pr(1 − p)k−r
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G(p) = BN(1,p)

▶ ε : “Repeat a Bernoulli event until r successes”.
▶ Let,

E . . . E S E . . . E S . . . E . . . E S

▶ Let, Y1 the number of trials until the first success, Y2 the number of supplementary trials until the 2nd
success, Y3 until the 3rd success and so on.

▶ Which means,
E . . . E S︸ ︷︷ ︸

Y1

E . . . E S︸ ︷︷ ︸
Y2

. . .︸︷︷︸
...

E . . . E S︸ ︷︷ ︸
Yr

▶ The draws being indenpendent and always having the same probability of success, each of the variables
Y1,Y2, . . . ,Yr is Geometric G(p).

▶ X =“number of trials until r successes”= Y1 + Y2 + . . . + Yr.
▶ So,

E(X) = E(Y1) +E(Y2) + . . . +E(Yr) =

r∑
i=1

1
p

=
r

p

and

V(X) =

r∑
i=1

V(Yi) =
r(1 − p)

p2

since Yi are indenpendent.
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