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Statistics i

▶ Statistics is the science of collecting, processing and analyzing data derived from the observation of random
phenomena.

▶ Data analysis is used to describe the phenomena studied, make predictions and make decisions about them. In this
way, statistics is an essential tool for understanding and managing complex phenomena.

▶ The data studied can be of any nature, which makes statistics useful in all disciplinary fields.

The fundamental point is that the data present uncertainties and variations.

Statistical methods are divided into two classes:

▶ Descriptive statistics, exploratory statistics or data analysis, aims to summarize the information contained in the data
in a synthetic and efficient way. Probabilities play only a minor role here.

▶ Inferential statistics goes beyond the simple description of data. Its purpose is to make predictions and make
decisions based on observations. In general, it is necessary to propose probabilistic models of the studied random
phenomenon and to know how to manage the risks of errors. Probabilities play a fundamental role here.

▶ Probability can be considered as a branch of pure mathematics, based on the theory of measurement, abstract and
completely disconnected from reality.

▶ Applied probability proposes probabilistic models of the course of concrete random phenomena. One can then, prior
to any experiment, make predictions about what will happen.
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Statistics ii

Example: it is usual to model the duration of the good functioning or life of a system, let’s say a light bulb, by a random
variable 𝑋 of exponential law of parameter 𝜆. Having adopted this probabilistic model, we can perform all the calculations
we want. For example:

▶ The probability that the bulb has not yet failed at date 𝑡 is 𝑃(𝑋 > 𝑡) = 𝑒−𝜆𝑡 .
▶ The average lifetime is 𝐸(𝑋) = 1/𝜆.
▶ If 𝑛 identical light bulbs are turned on at the same time, and they work independently of each other, the number 𝑁𝑡 of

light bulbs that will fail before a time 𝑡 is a random variable of binomial distribution ℬ(𝑛, 𝑃 (𝑋 ≤ 𝑡)) = ℬ(𝑛, 1 − 𝑒−𝜆𝑡).
Thus we expect that, on average, 𝐸(𝑁𝑡) = 𝑛(1 − 𝑒−𝜆𝑡) bulbs will fail between 0 and 𝑡.

In practice, if we want to use the theoretical results stated above, we have to make sure that we have chosen a good model,
i.e.that the life span of these bulbs is a random variable with an exponential law, and, on the other hand, we have to be
able to calculate the value of the parameter 𝜆 in some way. It is statistics that will allow us to solve these problems. To do
this, we need to do an experiment, collect data and analyze them.

We therefore set up what we call a test or an experiment. We run 𝑛 = 10 identical bulbs in parallel and independently of
each other, under the same experimental conditions, and we record their lifetimes. Let’s say that we obtain the following
lifetimes, expressed in hours: 91.6, 35.7, 251.3, 24.3, 5.4, 67.3, 170.9, 9.5, 118.4, 57.1
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Statistics iii

Let us note 𝑥1, … , 𝑥𝑛 these observations. We will therefore consider that 𝑥1, … , 𝑥𝑛 are the samples of random variables
𝑋1, … , 𝑋𝑛.

This means that after the experiment, the lifetime has been observed. We say that 𝑥𝑖 is a sample (a realization) of 𝑋𝑖 on
the test performed.

Since the bulbs are identical, it is natural to suppose that 𝑋𝑖 have the same law. This means that the same random
phenomenon is observed several times.

We can also assume that the 𝑋𝑖 are independent random variables. We can then ask the following questions:

1 With respect to these observations, is it reasonable to assume that the lifetime of a light bulb is a random variable with
an exponential distribution? If not, what other law would be more appropriate? This is a fit test (Chi-square test)
problem.

2 If the exponential distribution model has been chosen, how can we propose a good value (or set of values) for the
parameter 𝜆? This is a parametric estimation problem.

3 In this case, can we guarantee that 𝜆 is less than a fixed value 𝜆0? This will guarantee that 𝐸(𝑋) = 1/𝜆 ≥ 1/𝜆0, in
other words that the bulbs will be sufficiently reliable. This is a parametric hypothesis testing problem.

4 If we have 100 light bulbs, how many failures can we expect in less than 50 hours? This is a prediction problem.
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Sampling

Definition: Random sample

The random variables 𝑋1, 𝑋2, … , 𝑋𝑛 are a random sample of size 𝑛 if
(a) the 𝑋𝑖’s are independent random variables
(b) every 𝑋𝑖 has the same probability distribution.
An observation (realization) of the sample is (𝑥1, … , 𝑥𝑛).

Definition: Statistic

A statistic is any function of the observations in a random sample.

𝑇 (𝑋) = 𝑇 (𝑋1, … , 𝑋𝑛)

For example, each of 𝑋𝑛 = 1
𝑛 ∑𝑛

𝑖=1 𝑋𝑖, 𝑋2
1 or (𝑋1, 𝑋3 + 𝑋4, 2 ln 𝑋6) is a statistic.

Since a statistic is a random variable, it has a probability distribution.

The probability distribution of a statistic is called a sampling distribution.
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Central Limit Theorem

If 𝑋1, … , 𝑋𝑛 is a random sample of size 𝑛 taken from a population (either
finite or infinite) with mean 𝜇 and finite variance 𝜎2 , and if 𝑋𝑛 is the
sample mean, the limiting form of the distribution of

𝑍 = 𝑋𝑛 − 𝜇
𝜎/√𝑛

as 𝑛 → ∞, is the standard normal distribution 𝒩(0, 1).

If we have two independent populations with means 𝜇1 and 𝜇2 and vari-
ances 𝜎2

1 and 𝜎2
2, and if 𝑋1 and 𝑋2 are the sample means of two indepen-

dent random samples of sizes 𝑛1 and 𝑛2 from these populations, then the
sampling distribution of

𝑍 = 𝑋1 − 𝑋2 − (𝜇1 − 𝜇2)
√𝜎2

1/𝑛1 + 𝜎2
2/𝑛2

is approximately standard normal if the conditions of the central limit
theorem apply. If the two populations are normal, the sampling distribution
of 𝑍 is exactly standard normal.

Figure 1: Distributions of average scores from
throwing dice.
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Point Estimator

Definition: Point estimator

A point estimate of some population parameter 𝜃 is a single numerical value ̂𝜃 of a statistic 𝑇𝑛. The statistic 𝑇𝑛 is
called the point estimator.

A point estimator is a random variable. An estimation is a value.

Estimation problems occur frequently in engineering. We often need to estimate

▶ The mean 𝜇 of a single population
▶ The variance 𝜎2 (or standard deviation 𝜎) of a single population
▶ The proportion 𝑝 of items in a population that belong to a class of interest
▶ The difference in means of two populations, 𝜇1 − 𝜇2
▶ The difference in two population proportions, 𝑝1 − 𝑝2
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Unbiased Estimators

An estimator should be “close” in some sense to the true value of the unknown parameter.

Definition: Bias of an Estimator

The point estimator 𝑇𝑛 is an unbiased estimator for the parameter 𝜃 if

𝐸(𝑇𝑛) = 𝜃

If the estimator is not unbiased, then the difference 𝐸(𝑇𝑛) − 𝜃 is called the bias of the estimator 𝑇𝑛 .

Formally, we say that 𝑇𝑛 is an unbiased estimator of 𝜃 if the expected value of 𝑇𝑛 is equal to 𝜃. This is equivalent to saying
that the mean of the probability distribution of 𝑇𝑛 (or the mean of the sampling distribution of 𝑇𝑛) is equal to 𝜃.

When an estimator is unbiased, the bias is zero; that is, 𝐸(𝑇𝑛) − 𝜃 = 0.

The bias measures a systematic error of estimation. If 𝐸(𝑇𝑛) − 𝜃 < 0, 𝑇𝑛 tends to under-estimate 𝜃.
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Sample Mean and Variance

Suppose that 𝑋 is a random variable with
mean 𝜇 and variance 𝜎2. Let 𝑋1, … , 𝑋𝑛 be
a random sample of size 𝑛 from the popu-
lation represented by 𝑋.

▶ Show that the sample mean 𝑋𝑛 is an
unbiased estimator of 𝜇.

▶ Suggest an an unbiased estimator of
𝜎2.
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Variance of an Estimator

Minimum Variance Unbiased Estimator

If we consider all unbiased estimators of 𝜃, the one with the smallest
variance is called the minimum variance unbiased estimator (MVUE).

Figure 2: The sampling distributions of two
unbiased estimators.

If 𝑋1, … , 𝑋𝑛 is a random sample of size 𝑛 from a normal distribution with mean 𝜇 and variance 𝜎2, the sample mean
𝑋𝑛 is the MVUE for 𝜇.
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Mean Squared Error of an Estimator

Definition: Mean Squared Error of an Estimator

The mean squared error of an estimator 𝑇𝑛 of the parameter 𝜃 is defined as

𝑀𝑆𝐸(𝑇𝑛) = 𝐸[(𝑇𝑛 − 𝜃)2]

The mean squared error can be rewritten as follows:

𝑀𝑆𝐸 (𝑇𝑛) = 𝐸 [(𝑇𝑛 − 𝜃)2] = 𝐸 [(𝑇𝑛 − 𝐸 (𝑇𝑛) + 𝐸 (𝑇𝑛) − 𝜃)2]
= 𝐸 [(𝑇𝑛 − 𝐸 (𝑇𝑛))2] + 2𝐸 [𝑇𝑛 − 𝐸 (𝑇𝑛)] 𝐸 [𝐸 (𝑇𝑛) − 𝜃] + 𝐸 [(𝐸 (𝑇𝑛) − 𝜃)2]
= Var (𝑇𝑛) + [𝐸 (𝑇𝑛) − 𝜃]2

= Variance of the estimator + squarred bias
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Methods of Point Estimation

In this section, we discuss methods for obtaining point estimators: the method of moments and the method of maximum
likelihood.

▶ Maximum likelihood estimates are generally preferable to moment estimators because they have better efficiency
properties.

▶ However, moment estimators are sometimes easier to compute.
▶ Both methods can produce unbiased point estimators.
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Method of Moments

The general idea behind the method of moments is to equate population moments, which are defined in terms of
expected values, to the corresponding sample moments.
The population moments will be functions of the unknown parameters. Then these equations are solved to yield
estimators of the unknown parameters.

If 𝐸(𝑋) = 𝜙(𝜃), where 𝜙 is an invertible function, the moment estimator of 𝜃 is ̂𝜃𝑛 = 𝜙−1(𝑋𝑛).

For example, if the parameter to estimate is the expected value of 𝑋𝑖, the moment estimator of 𝐸(𝑋) is the sample mean
𝑋𝑛.
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Method of Moments

Examples:
▶ Exponential distribution
▶ Normal distribution
▶ Gamma distribution
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Method of Maximum Likelihood

Suppose that 𝑋 is a random variable with probability distribution depending on a single unknown parameter 𝜃. Let
𝑥1, … , 𝑥𝑛 be the observed values in a random sample of size 𝑛. Then the likelihood function of the sample is

ℒ(𝜃; 𝑥1, … , 𝑥𝑛) = { 𝑃(𝑋1 = 𝑥1, … , 𝑋𝑛 = 𝑥𝑛; 𝜃) if 𝑋𝑖 are discrete
𝑓𝑋1,…,𝑋𝑛

(𝑥1, … , 𝑥𝑛; 𝜃) if 𝑋𝑖 are continuous

After supposing that all the 𝑋𝑖 are independant:

ℒ(𝜃; 𝑥1, … , 𝑥𝑛) =

⎧{{
⎨{{⎩

𝑛
∏
𝑖=1

𝑃(𝑋𝑖 = 𝑥𝑖; 𝜃) =
𝑛

∏
𝑖=1

𝑃(𝑋 = 𝑥𝑖; 𝜃) if 𝑋𝑖 are discrete
𝑛

∏
𝑖=1

𝑓𝑋𝑖
(𝑥𝑖; 𝜃) =

𝑛
∏
𝑖=1

𝑓(𝑥𝑖; 𝜃) if 𝑋𝑖 are continuous

Maximum likelihood estimator

Note that the likelihood function is now a function of only the unknown parameter 𝜃. The maximum likelihood
estimator (MLE) of 𝜃 is the value of 𝜃 that maximizes the likelihood function ℒ(𝜃) (or its ln).
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Method of Maximum Likelihood

Examples:
▶ Bernoulli distribution
▶ Exponential distribution
▶ Normal distribution
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