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INTRODUCTION

Engineers are often involved in estimating parameters. For example, there is an ASTM
Standard E23 that defines a technique called the Charpy V-notch method for notched
bar impact testing of metallic materials. The impact energy is often used to determine
if the material experiences a ductile-to-brittle transition as the temperature decreases.
Suppose that you have tested a sample of 10 specimens of a particular material with
this procedure. You know that you can use the sample average X to estimate the true
mean impact energy . However, we also know that the true mean impact energy is un-
likely to be exactly equal to your estimate. Reporting the results of your test as a single
number is unappealing, because there is nothing inherent in X that provides any infor-
mation about how close it is to w. Your estimate could be very close, or it could be con-
siderably far from the true mean. A way to avoid this is to report the estimate in terms
of a range of plausible values called a confidence interval. A confidence interval al-
ways specifies a confidence level, usually 90%, 95%, or 99%, which is a measure of
the reliability of the procedure. So if a 95% confidence interval on the impact energy
based on the data from your 10 specimens has a lower limit of 63.84/ and an upper
limit of 65.08/, then we can say that at the 95% level of confidence any value of mean
impact energy between 63.84 J and 65.08 J is a plausible value. By reliability, we mean
that if we repeated this experiment over and over again, 95% of all samples would pro-
duce a confidence interval that contains the true mean impact energy, and only 5% of
the time would the interval be in error. In this chapter you will learn how to construct
confidence intervals and other useful types of statistical intervals for many important
types of problem situations.
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In the previous chapter, we illustrated how a point estimate of a parameter can be estimated
from sample data. However, it is important to understand how good the estimate obtained
is. For example, suppose that we estimate the mean viscosity of a chemical product to be
(il = X = 1000. Now because of sampling variability, it is almost never the case that the true
mean [ is exactly equal to the estimate X. The point estimate says nothing about how close [1
is to W. Is the process mean likely to be between 900 and 1100? Or is it likely to be between
990 and 1010? The answer to these questions affects our decisions regarding this process.
Bounds that represent an interval of plausible values for a parameter are examples of an inter-
val estimate. Surprisingly, it is easy to determine such intervals in many cases, and the same
data that provided the point estimate are typically used.

An interval estimate for a population parameter is called a confidence interval. Informa-
tion about the precision of estimation is conveyed by the length of the interval. A short interval
implies precise estimation. We cannot be certain that the interval contains the true, unknown
population parameter—we use only a sample from the full population to compute the point
estimate and the interval. However, the confidence interval is constructed so that we have high
confidence that it does contain the unknown population parameter. Confidence intervals are
widely used in engineering and the sciences.
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8-1

Confidence Interval on the Mean of a Normal
Distribution, Variance Known

The basic ideas of a confidence interval (CI) are most easily understood by initially consider-
ing a simple situation. Suppose that we have a normal population with unknown mean p and
known variance °. This is a somewhat unrealistic scenario because typically both the mean
and variance are unknown. However, in subsequent sections, we will present confidence inter-
vals for more general situations.

8-1.1 DEVELOPMENT OF THE CONFIDENCE INTERVAL AND TS BASIC PROPERTIES

Suppose that X,, X, . X is a random sample from a normal distribution with unknown mean
W and known variance 6°. From the results of Chapler 5. we know that the sample mean X is
normally distributed with mean p and variance 6°/n. We may standardize X by subtracting
the mean and dividing by the standard deviation, which results in the variable

_X-u 8.1
o/\n @b
The random variable Z has a standard normal distribution.

A confidence interval estimate for 1 is an interval of the form / < 1 < i, where the end-points /
and u are computed from the sample data. Because different samples will produce different values
of I and u, these end-points are values of random variables L and U, respectively. Suppose that we
can determine values of L and U such that the following probability statement is true:

P{L<p<U}=1-a (8-2)

where 0 < o < 1. There is a probability of 1 — o of selecting a sample for which the CI will con-
tain the true value of p. Once we have selected the sample, so that X; = x;, X5 = x,,.... X, = x,,,
and computed / and u, the resulting confidence interval for . is

I<p<u (8-3)

The end-points or bounds / and u are called the lower- and upper-confidence limits (bounds),
respectively, and 1 — o is called the confidence coefficient.
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Confidence Interval
on the Mean, Variance
Known

In our problem situation, because Z = ()? - },l)/"(c/\/;) has a standard normal distribution,
we may write

X—
P{_ZEIZSG/\/% SZa/z}=1—0¢

Now manipulate the quantities inside the brackets by (1) multiplying through by 6/ \/;, (2)
subtracting X from each term, and (3) multiplying through by —1. This results in

P{X—za/g%Su£X+zwj—}:l—a (8-4)
n n

This is a random interval because the end-points X iZ,,,zc/\/; involve the random vari-
able X. From consideration of Equation 8-4, the lower and upper end-points or limits of the
inequalities in Equation 8-4 are the lower- and upper-confidence limits L and U, respectively.
This leads to the following definition.

If X is the sample mean of a random sample of size n from a normal population with
known variance 6, a 100(1 — )% CI on W is given by

X =242 0/\n SUET+2,,6/n 8-5)

where z,,,, is the upper 1000 /2 percentage point of the standard normal distribution.

The development of this CI assumed that we are sampling from a normal population. The CI
is quite robust to this assumption. That is, moderate departures from normality are of no seri-
ous concern. From a practical viewpoint, this implies that an advertised 95% CI might have
actual confidence of 93% or 94%.
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Metallic Material Transition  ASTM Standard E23 defines standard test methods for notched

bar impact testing of metallic materials. The Charpy V-notch (CVN) technique measures impact
energy and is often used to determine whether or not a material experiences a ductile-to-brittle transition with decreas-
ing temperature. Ten measurements of impact energy (J) on specimens of A238 steel cut at 60°C are as follows: 64.1,
64.7, 64.5, 64.6, 64.5, 64.3, 64.6, 64.8, 64.2, and 64.3. Assume that impact energy is normally distributed withc =1J.
We want to find a 95% CI for 1, the mean impact energy. The required quantities are z,,, = 75005 =1.96, n =10, 0 =1,
and x = 64.46. The resulting 95% CI is found from Equation 8-5 as follows:

X AP ITES F -l

_Zu/ZJ—— = Zas2
n Jn
1

1
64.46 -1.96 —<nu<64.46+196 ——
V10 : V10

63.84 <1 <65.08

Practical Interpretation: Based on the sample data, a range of highly plausible values for mean impact energy for
A238 steel at 60°C is 63.84J < <65.08J.
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Interpreting a Confidence Interval
How does one interpret a confidence interval? In the impact energy estimation problem in
Example 8-1, the 95% CI is 63.84 < < 65.08, so it is tempting to conclude that i is within

this interval with probability 0.95. However, with a little reflection, it is easy to see that this
cannot be correct; the true value of W is unknown, and the statement 63.84 < < 65.08 is
either correct (true with probability 1) or incorrect (false with probability 1). The correct
interpretation lies in the realization that a CI is a random interval because in the probability
statement defining the end-points of the interval (Equation 8-2), L and U are random variables.
Consequently, the correct interpretation of a 100(1 — ot)% CI depends on the relative frequency
view of probability. Specifically, if an infinite number of random samples are collected and
a100(1 — a)% confidence interval for L is computed from each sample, 100(1 — ot)% of these
intervals will contain the true value of .

The situation is illustrated in Fig. 8-1, which shows several 100(1 — ot)% confidence intervals
for the mean [ of a normal distribution. The dots at the center of the intervals indicate the point
estimate of . (that is, x). Notice that one of the intervals fails to contain the true value of . If this
were a 95% confidence interval, in the long run only 5% of the intervals would fail to contain 1.

Now in practice, we obtain only one random sample and calculate one confidence interval.
Because this interval either will or will not contain the true value of W, it is not reasonable to attach
a probability level to this specific event. The appropriate statement is that the observed interval
[1, u] brackets the true value of 1 with confidence 100(1 — o). This statement has a frequency
interpretation; that is, we do not know whether the statement is true for this specific sample, but
the method used to obtain the interval [/, u] yields correct statements 100(1 — o) % of the time.

1 2 3 4 56 7 8 910111213 141516
Interval number

FIGURE 8-1 Repeated
construction of a confi-
dence interval for p.
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Confidence Level and Precision of Estimation

Notice that in Example 8-1, our choice of the 95% level of confidence was essentially arbi-
trary. What would have happened if we had chosen a higher level of confidence, say, 99%? In
fact, is it not reasonable that we would want the higher level of confidence? At o= 0.01, we
find Zo/2 = Zoo12 = Zo.00s = 2.58,while for o0 = 0.05, zgps =1.96. Thus, the length of the 95%

confidence interval is

2(1 966/n ) =3.926/\n
whereas the length of the 99% CI is

2(2.585/\/2 ) =5.160/n

Thus, the 99% Cl is longer than the 95% CI. This is why we have a higher level of confidence
in the 99% confidence interval. Generally, for a fixed sample size n and standard deviation G,
the higher the confidence level, the longer the resulting CI.

The length of a confidence interval is a measure of the precision of estimation. Many

authors define the half-length of the CI (in our case z a/gc,,"’\/r_l ) as the bound on the error in
estimation of the parameter. From the preceeding discussion, we see that precision is inversely

related to the confidence level. It is desirable to obtain a confidence interval that is short
enough for decision-making purposes and that also has adequate confidence. One way to
achieve this is by choosing the sample size n to be large enough to give a CI of specified length
or precision with prescribed confidence.

E=error=|x-p|
e—

FIGURE 8-2 Errorin 1=%-zqpolyn x B u=E+zgpoln
estimating p with x.
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8-1.3 ONE-SIDED CONFIDENCE BOUNDS

One-Sided Confidence
Bounds on the Mean,
Variance Known

The confidence interval in Equation 8-5 gives both a lower confidence bound and an upper
confidence bound for pt. Thus, it provides a two-sided CI. It is also possible to obtain one-

sided confidence bounds for m by setting either the lower bound / =— o or the upper bound
u = o and replacing z,/» by zq.

A 100(1 — )% upper-confidence bound for [ is
W< X+2,0/\n (8-7)
and a 100(1 — o) % lower-confidence bound for [ is

¥—z40/\n=1<p (8-8)
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8-2 Confidence Interval on the Mean of a Normal

Distribution, Variance Unknown

When we are constructing confidence intervals on the mean [ of a normal population when
6” is known, we can use the procedure in Section 8-1.1. This CI is also approximately valid
(because of the central limit theorem) regardless of whether or not the underlying population
is normal so long as n is reasonably large (n > 40, say). As noted in Section 8-1.5, we can
even handle the case of unknown variance for the large-sample-size situation. However, when
the sample is small and 6 is unknown, we must make an assumption about the form of the
underlying distribution to obtain a valid CI procedure. A reasonable assumption in many cases
is that the underlying distribution is normal.

Many populations encountered in practice are well approximated by the normal distribu-
tion, so this assumption will lead to confidence interval procedures of wide applicability. In
fact, moderate departure from normality will have little effect on validity. When the assump-
tion is unreasonable, an alternative is to use nonparametric statistical procedures that are valid
for any underlying distribution.

Suppose that the population of interest has a normal distribution with unknown mean p and
unknown variance 6% Assume that a random sample of size n, say, Xw Xl, s X", is available,
and let X and $? be the sample mean and variance, respectively.

We wish to construct a two-sided CI on p. If the variance 6° is known, we know that
Z= ()? - u)/(c/\/;) has a standard normal distribution. When 62 is unknown, a logical pro-
cedure is to replace ¢ with the sample standard deviation S. The random variable Z now
becomes T = (X — 1) /(S//\/;)A A logical question is what effect replacing ¢ with § has on the
distribution of the random variable 7. If n is large, the answer to this question is “very little,”
and we can proceed to use the confidence interval based on the normal distribution from Sec-
tion 8-1.5. However, n is usually small in most engineering problems, and in this situation, a
different distribution must be employed to construct the CI.
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8-2.1 ¢ DISTRIBUTION

t Distribution
Let X " Xz, s X” be a random sample from a normal distribution with unknown mean
W and unknown variance 2. The random variable
X-u
T= 8-13
s/n 1

has a ¢ distribution with n — 1 degrees of freedom.

The ¢ probability density function is

T|(k+1)/2
7(x)= [(k+1), ] 1 o< x<on 8-14)

= \/ﬁr(k/Z) [(xz/rk)+ l](l«-l)/z

FIGURE 8-4 Probability density functions of several
tdistributions.
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8-2.2 1 CONFIDENCE INTERVAL ON p

It is easy to find a 100(1 — )% confidence interval on the mean of a normal distribution with
unknown variance by proceeding essentially as we did in Section 8-1.1. We know that the dis-
tribution of 7' = (X —p)/V(S/’ﬁ ) is t with n — 1 degrees of freedom. Letting 7,,,,, be the upper
10001/2 percentage point of the ¢ distribution with n — 1 degrees of freedom, we may write

or

X -
P(_ta/?.,n—l < S//\/E < ’m/Z,n—lJ: I-o
/Nn

Rearranging this last equation yields
P(X=ta/n1 S/Nn SUE Xt 100,01 S/40)=1-00 (8-15)

This leads to the following definition of the 100(1 — o)% two-sided confidence interval on .

Confidence
Interval on the If X and s are the mean and standard deviation of a random sample from a normal
Mean, Variance distribution with unknown variance 62, a 100(1 — 0)% confidence interval on L is
Unknown given by

R PRI ETES AN (8-16)

where #,,,,., is the upper 100c./2 percentage point of the ¢ distribution with n — 1
degrees of freedom.
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The assumption underlying this Cl is that we are sampling from a normal population. How-
ever, the 7 distribution-based ClI is relatively insensitive or robust to this assumption. Check-
ing the normality assumption by constructing a normal probability plot of the data is a good
general practice. Small to moderate departures from normality are not a cause for concern.

One-sided confidence bounds on the mean of a normal distribution are also of interest and
are easy to find. Simply use only the appropriate lower or upper confidence limit from Equa-
tion 8-16 and replace t,/,,; by 4, ;.
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8-3 Confidence Interval on the Variance and
Standard Deviation of a Normal Distribution

Sometimes confidence intervals on the population variance or standard deviation are needed.
When the population is modeled by a normal distribution, the tests and intervals described
in this section are applicable. The following result provides the basis of constructing these
confidence intervals.

2
%" Distribution

Let Xl, Xz, s K . be a random sample from a normal distribution with mean p and
A variance 62, and let $* be the sample variance. Then the random variable
n-1)s’
X’ = % (8-17)
(o)

has a chi-square (Xz) distribution with n — 1 degrees of freedom.

FIGURE 8-8
Probability density
functions of several
% distributions.

x

The probability density function of a % random variable is

:; (k/2)-1 ,-xr2
f(x) 2"/2I‘(k/2)x e x>0 (8-18)

where k is the number of degrees of freedom. The mean and variance of the % distribution
are k and 2k, respectively. Several chi-square distributions are shown in Fig. 8-8. Note that the
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This leads to the following definition of the confidence interval for 6.

Confidence Interval . . ) )
on the Variance If 5? is the sample variance from a random sample of n observations from a normal dis-

tribution with unknown variance 62, then a 100(1 — o) % confidence interval on ¢” is

2 2

("2'71)5 <2< (’;‘71” (8-19)

Xas2.n-1 Xi-as2.n-1

where Xa/2s-1 and Xi-a/2.-1 are the upper and lower 1000 / 2 percentage points of

the chi-square distribution with n — 1 degrees of freedom, respectively. A confidence

interval for ¢ has lower and upper limits that are the square roots of the correspond-
ing limits in Equation 8-19.

It is also possible to find a 100(1 — )% lower confidence bound or upper confidence

bound on 6.
One-Sided Confidence
Bounds on the The 100(1 — o)% lower and upper confidence bounds on 6° are
Varianc
ariance (n—l)sz ’ . (n—l)sz
=2 =0 andio =7 (8-20)
Xu‘nfl xlfnuxfl
respectively.

2

The ClIs given in Equations 8-19 and 8-20 are less robust to the normality assumption. The distribution of(n = I)SZJ’/G'
can be very different from the chi-square if the underlying population is not normal.
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8-4 Large-Sample Confidence Interval
for a Population Proportion

Normal
Approximation
for a Binomial
Proportion
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It is often necessary to construct confidence intervals on a population proportion. For exam-
ple, suppose that a random sample of size n has been taken from a large (possibly infinite)
population and that X(<n) observations in this sample belong to a class of interest. Then
P=X/nisa point estimator of the proportion of the population p that belongs to this class.
Note that n and p are the parameters of a binomial distribution. Furthermore, from Chapter 4
we know that the sampling distribution of Pis approximately normal with mean p and vari-
ance p(l1— p)/n. if p is not too close to either 0 or 1 and if n is relatively large. Typically, to
apply this approximation we require that np and n(1 — p) be greater than or equal to 5. We will
use the normal approximation in this section.

If n is large, the distribution of

7= X—np _ 13—p

Jnp(1-p) JP(I-P)

n

is approximately standard normal.

To construct the confidence interval on p, note that

P(—Za/z SZSZa/z)=1—0L
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P—p
p(1-p)
n

Pl —z4, < SZan |=1-00

This may be rearranged as

P[ﬁ—zwz,’@Spsﬁ+zu/2,’w]=l—a (8-21)

The quantity \/ p(1— p)/ n in Equation 8-21 is called the standard error of the point estimator p.
This was discussed in Chapter 7. Unfortunately, the upper and lower limits of the confidence
interval obtained from Equation 8-21 contain the unknown parameter p. However, as sug-
gested at the end of Section 8-1.5, a solution that is often safisfactory is to replace p by P in
the standard error, which results in

P ﬁ—za/z\JMSpSﬁnmmﬂP(ln_P) =l-a (8-22)

This leads to the approximate 100(1 — )% confidence interval on p.



Approximate

Confidence
Interval on a
Binomial
Proportion
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If p is the proportion of observations in a random sample of size n that belongs to a
class of interest, an approximate 100(1 — )% confidence interval on the proportion
p of the population that belongs to this class is
« p(1-p A p(l-p
P~ 22 % Sp<ptian u (8-23)

where z,,/, is the upper o./2 percentage point of the standard normal distribution.

This procedure depends on the adequacy of the normal approximation to the binomial. To
be reasonably conservative, this requires that np and n(1 — p) be greater than or equal to 5.
In situations when this approximation is inappropriate, particularly in cases when 7 is small,
other methods must be used. Tables of the binomial distribution could be used to obtain a con-
fidence interval for p. However, we could also use numerical methods that are implemented

on the binomial probability mass function in some computer program.



8-5 Guidelines for Constructing Confidence Intervals

The most difficult step in constructing a confidence interval is often the match of the appropri-
ate calculation to the objective of the study. Common cases are listed in Table 8-1 along with
the reference to the section that covers the appropriate calculation for a confidence interval
test. Table 8-1 provides a simple road map to help select the appropriate analysis. Two primary
comments can help identify the analysis:

1. Determine the parameter (and the distribution of the data) that will be bounded by the con-

fidence interval or tested by the hypothesis.

2. Check if other parameters are known or need to be estimated.

. TABLE « 8-1 The Roadmap for Constructing Confidence Intervals and Performing Hypothesis Tests,
One-Sample Case

Parameter to Be Bounded
by the Confidence Confidence
Interval or Tested with a Interval Hypothesis
Hypothesis? Symbol Other P: i Section Test Section @
Mean of normal u Standard deviation G 8-1 9-2 Large sample size is often
distribution known taken to be n =40
Mean of arbitrary distribu- '8 Sample size large 8-1.5 9-2.5
tion with large sample size enough that central limit
theorem applies and G
is essentially known
Mean of normal '8 Standard deviation G 82 9-3
distribution unknown and estimated
Variance (or standard o’ Mean |1 unknown and 8-3 9-4
deviation) of normal estimated
distribution
Population proportion P None 8-4 9-5

In Chapter 9, we will study a procedure closely related to confidence intervals called

hypothesis testing. Table 8-1 can be used for those procedures also. This road map will be

extended to more cases in Chapter 10.
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