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INTRODUCTION

In the previous two chapters, we showed how a parameter of a population can be estimated
from sample data, using either a point estimate or an interval of likely values
called a confidence interval . In many situations, a different type of problem is
of interest; there are two competing claims about the value of a parameter, and the engineer
must determine which claim is correct. For example, suppose that an engineer is designing
an air crew escape system that consists of an ejection seat and a rocket motor that powers the
seat. The rocket motor contains a propellant, and for the ejection seat to function properly, the
propellant should have a mean burning rate of 50 cm/sec. If the burning rate is too low, the
ejection seat may not function properly, leading to an unsafe ejection and possible injury of
the pilot. Higher burning rates may imply instability in the propellant or an ejection seat that
is too powerful, again leading to possible pilot injury. So the practical engineering question
that must be answered is: Does the mean burning rate of the propellant equal 50 cm/sec, or is
it some other value (either higher or lower)? This type of question can be answered using a
statistical technique called hypothesis testing. This chapter focuses on the basic principles of
hypothesis testing and provides techniques for solving the most common types of hypothesis
testing problems involving a single sample of data.
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Statistical Hypothesis

A statistical hypothesis is a statement about the parameters of one or more populations.

Because we use probability distributions to represent populations, a statistical hypothesis
may also be thought of as a statement about the probability distribution of a random variable.
The hypothesis will usually involve one or more parameters of this distribution.

For example, consider the air crew escape system described in the introduction. Suppose
that we are interested in the burning rate of the solid propellant. Burning rate is a random
variable that can be described by a probability distribution. Suppose that our interest focuses
on the mean burning rate (a parameter of this distribution). Specifically, we are interested in
deciding whether or not the mean burning rate is 50 centimeters per second. We may express
this formally as

H,: =50 centimeters per second H,:p # 50 centimeter per seconds  (9-1)

The statement Ho: L = 50 centimeters per second in Equation 9-1 is called the null hypothesis.
This is a claim that is initially assumed to be true. The Hy:p#50 i S per sec-
ond is called the alternative hypothesis and it is a that condradicts the null hypothesis.
Because the alternative hypothesis specifies values of 1 that could be either greater or less than 50
centimeters per second, it is called a two-sided alternative hypothesis. In some situations, we may
wish to formulate a one-sided alternative hypothesis, as in

H,: 1 =50 centimeters per second H,: =50 centimeters per second
or ©9-2)
Hy: < 50 centimeter per seconds H,: > 50 centimeters per second

‘We will always state the null hypothesis as an equality claim. However when the alternative
hypothesis is stated with the < sign, the implicit claim in the null hypothesis can be taken as
> and when the alternative hyphothesis is stated with the > sign, the implicit claim in the null
hypothesis can be taken as <.
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A procedure leading to a decision about the null hypothesis is called a test of a hypothesis.
Hypothesis-testing procedures rely on using the information in a random sample from the popu-
lation of interest. If this information is consistent with the null hypothesis, we will not reject it;
however, if this information is inconsistent with the null hypothesis, we will conclude that the
null hypothesis is false and reject it in favor of the alternative. We emphasize that the truth or
falsity of a particular hypothesis can never be known with certainty unless we can examine the
entire population. This is usually impossible in most practical situations. Therefore, a hypothe-
sis-testing procedure should be developed with the probability of reaching a wrong conclusion in

mind. Testing the hypothesis involves taking a random sample, computing a test statistic from
the sample data, and then using the test statistic to make a decision about the null hypothesis.
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TESTS OF STATISTICAL HYPOTHESES

To illustrate the general concepts, consider the propellant burning rate problem introduced
earlier. The null hypothesis is that the mean burning rate is 50 centimeters per second, and the
alternate is that it is not equal to 50 centimeters per second. That is, we wish to test

H,: 1= 50 centimeters per second
H,:p # 50 centimeters per second

Suppose that a sample of n = 10 specimens is tested and that the sample mean burning rate x
is observed. The sample mean is an estimate of the true population mean 1. A value of the sample
mean x that falls close to the hypothesized value of i = 50 centimeters per second does not con-
flict with the null hypothesis that the true mean 1 is really 50 centimeters per second. On the other
hand, a sample mean that is considerably different from 50 centimeters per second is evidence in
support of the alternative hypothesis H,. Thus, the sample mean is the test statistic in this case.

The sample mean can take on many different values. Suppose that if 48.5<x <51.5,
we will not reject the null hypothesis Hy: =50, and if either x <48.5 or x >51.5, we will
reject the null hypothesis in favor of the alternative hypothesis H,: . # 50. This is illustrated
in Fig. 9-1. The values of x that are less than 48.5 and greater than 51.5 constitute the critical
region for the test; all values that are in the interval 48.5 < x <51.5 form a region for which
we will fail to reject the null hypothesis. By convention, this is usually called the acceptance
region. The boundaries between the critical regions and the acceptance region are called the
critical values. In our example, the critical values are 48.5 and 51.5. It is customary to state
conclusions relative to the null hypothesis H,. Therefore, we reject H, in favor of H, if the test
statistic falls in the critical region and fail to reject H, otherwise.

This decision procedure can lead to either of two wrong conclusions. For example, the true
mean burning rate of the propellant could be equal to 50 centimeters per second. However, for the
randomly selected propellant specimens that are tested, we could observe a value of the test statis-
tic x that falls into the critical region. We would then reject the null hypothesis H|, in favor of the
alternate H, when, in fact, H,, is really true. This type of wrong conclusion is called a type I error.
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Type I Error

Rejecting the null hypothesis H, when it is true is defined as a type I error.

Now suppose that the true mean burning rate is different from 50 centimeters per second, yet
the sample mean Xx falls in the acceptance region. In this case, we would fail to reject H, when
it is false. This type of wrong conclusion is called a type II error.

Type II Error . . . . ‘
Failing to reject the null hypothesis when it is false is defined as a type II error.

example
Reject Hy Fail to Reject Hp Reject Hy
n# 50 cm/s n=50cm/s w# 50 cm/s
a/2=0.0287 al2 =0.0287
48.5 50 51.5 x

FIGURE 9-1 Decision criteria for testing Hy: L = 50 centimeters

485 p=50 515 ¥
per second versus H,: L # 50 centimeters per second.

FIGURE 9-2 The critical region for Hy: = 50
versus H,: |1 # 50 and n=10.

Thus, in testing any statistical hypothesis, four different situations determine whether the final
decision is correct or in error. These situations are presented in Table 9-1.

B TABLE - 9-1 Decisions in Hypothesis Testing Because our decision is based on random variables, probabilities can be associated with

the type I and type II errors in Table 9-1. The probability of making a type I error is denoted
Decision H, Is True H, Is False by the Greek letter o..
Fail to reject Hy, ~ Noerror Type M eorce Probability of
Reject Hy Ty G - Type I Error o= P(type L error) = P(reject H, when H,, is true) 9-3)

Sometimes the type I error probability is called the significance level, the o-error, or the
size of the test.
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In evaluating a hypothesis-testing procedure, it is also important to examine the probability
of a type II error, which we will denote by B. That is,

Probability of
Type 11 Error B = P(type II error) = P(fail to reject H, when H| is false) (9-4)

To calculate B (sometimes called the 3-error), we must have a specific alternative hypothesis; that
is, we must have a particular value of 1. For example, suppose that it is important to reject the null
hypothesis H,: |1 = 50 whenever the mean burning rate [ is greater than 52 centimeters per second
or less than 48 centimeters per second. We could calculate the probability of a type II error {3 for
the values L = 52 and | = 48 and use this result to tell us something about how the test procedure
would perform. Specifically, how will the test procedure work if we wish to detect, that is, reject
H,, for amean value of i = 52 or pL = 48? Because of symmetry, it is necessary to evaluate only one
of the two cases—say, find the probability of accepting the null hypothesis H: i = 50 centimeters
per second when the true mean is |1 = 52 centimeters per second.
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Generally, the analyst controls the type I error probability o when he or she selects the
critical values. Thus, it is usually easy for the analyst to set the type I error probability at (or
near) any desired value. Because the analyst can directly control the probability of wrongly
rejecting H,, we always think of rejection of the null hypothesis H,, as a strong conclusion.

Because we can control the probability of making a type I error (or significance level), a
logical question is what value should be used. The type I error probability is a measure of risk,

, the risk of Tuding that the null hypothesis is false when it really is not. So, the
value of o should be chosen to reflect the consequences (economic, social, etc.) of incorrectly
rejecting the null hypothesis. Smaller values of o would reflect more serious consequences and
larger values of o would be consistent with less severe consequences. This is often hard to do,
so what has evolved in much of scientific and engineering practice is to use the value o= 0.05 in
most situations unless information is available that this is an inappropriate choice. In the rocket
propellant problem with n = 10, this would correspond to critical values of 48.45 and 51.55.

A widely used procedure in hypothesis testing is to use a type 1 error or signifi-
cance level of o= 0.05. This value has evolved through experience and may not be
appropriate for all situations.

On the other hand, the probability of type II error B is not a constant but depends on the true
value of the parameter. It also depends on the sample size that we have selected. Because the
type IT error probability B is a function of both the sample size and the extent to which the null
hypothesis H, is false, it is customary to think of the decision to accept H,, as a weak conclu-
sion unless we know that P is acceptably small. Therefore, rather than saying we “accept H,,”
we prefer the terminology “fail to reject H,.” Failing to reject H, implies that we have not
found sufficient evidence to reject H, that is, to make a strong statement. Failing to reject H,
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does not necessarily mean that there is a high probability that H, is true. It may simply mean
that more data are required to reach a strong conclusion. This can have important implications
for the formulation of hypotheses.

A useful analog exists between hypothesis testing and a jury trial. In a trial, the defendant
is assumed innocent (this is like assuming the null hypothesis to be true). If strong evidence is
found to the contrary, the defendant is declared to be guilty (we reject the null hypothesis). If evi-
dence is insufficient, the defendant is declared to be not guilty. This is not the same as proving
the defendant innocent and so, like failing to reject the null hypothesis, it is a weak conclusion.

An important concept that we will use is the power of a statistical test.

The power of a statistical test is the probability of rejecting the null hypothesis H,
when the alternative hypothesis is true.

The power is computed as 1 —, and power can be interpreted as the probability of correctly

jecting a false null hyp is. We often p istical tests by comparing their power
properties. For example, consider the propellant burning rate problem when we are testing
H,: =50 centimeters per second against H,: . # 50 centimeters per second. Suppose that the
true value of the mean is i = 52. When n = 10, we found that B = 0.2643, so the power of this
testis 1—f =1-0.2643 = 0.7357 when j = 52.

Power is a very descriptive and concise measure of the sensitivity of a statistical test when by
sensitivity we mean the ability of the test to detect differences. In this case, the sensitivity of the
test for detecting the difference between a mean burning rate of 50 centimeters per second and
52 centimeters per second is 0.7357. That is, if the true mean is really 52 centimeters per second,
this test will correctly reject Hy: |1 = 50 and “detect” this difference 73.57% of the time. If this
value of power is judged to be too low, the analyst can increase either o. or the sample size n.




One-Sided and Two-Sided Hypotheses

In f lati ided alternative hypoth we should ber that rejecting Hy
is always a strong conclusion. Consequently, we should put the statement about which
it is important to make a strong conclusion in the alternative hypothesis. In real-world

problems, this will often depend on our point of view and experience with the situation.

P-Values in Hypothesis Tests

The P-value is the smallest level of significance that would lead to rejection of the
null hypothesis H, with the given data.

Operationally, once a P-value is computed, we typically compare it to a predefined signifi-
cance level to make a decision. Often this predefined significance level is 0.05. However, in
results and 1 it is standard practice to report the observed P-value along

with the decision that is made regarding the null hypothesis.

CONNECTION BETWEEN HYPOTHESIS TESTS AND CONFIDENCE INTERVALS

A close relationship exists between the test of a hypothesis about any parameter, say 6, and
the confidence interval for 6. Tf [1, u] is a100(1 - a)% confidence interval for the parameter 6,
the test of size ot of the hypothesis

Hy:6=0, Hi:0#6,

will lead to rejection of H, if and only if , is not in the 100(1—ct)% CI [Z, u]. As an illustra-
tion, consider the escape system propellant problem with x = 51.3, 6 = 2.5, and n = 16. The null
hypothesis H,: .= S0 was rejected, using & = 0.05, The 95% two-sided C on . can be calculated
using Equation 8-7. This CLis 51.3£1.96(2.5/ V16 ) and this is 50.075 < W <52.525. Because
the value 1 = 50 is not included in this interval, the null hypothesis H ; L = 50 is rejected.
Although hypothesis tests and CIs are equivalent procedures insofar as decision making or

about y is each provides different insights. For instance, the
confidence interval provides a range of likely values for |1 at a stated confidence level whereas
hypothesis testing is an easy framework for displaying the risk levels such as the P-value
associated with a specific decision.
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GENERAL PROCEDURE FOR HYPOTHESIS TESTS

This chapter develops hypothesis-testing procedures for many practical problems. Use of the
following sequence of steps in applying hypothesis-testing methodology is recommended.

. Parameter of interest: From the problem context, identify the parameter of interest.

. Null hypothesis, H: State the null hypothesis, H .

. Alternative hypothesis, H,: Specify an appropriate alternative hypothesis, H.

. Test statistic: Determine an appropriate test statistic.

. Reject H if: State the rejection criteria for the null hypothesis.

. Computations: Compute any necessary sample quantities, substitute these into the equa-
tion for the test statistic, and compute that value.

A U AW N

7. Draw conclusions: Decide whether or not H, should be rejected and report that in the
problem context.
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Tests on the Mean of a Normall Distribution,
Variance Known

The reference distribution for this test is the standard normal distribution. The test is usu-
ally called a z-test.
In this section, we consider hypothesis testing about the mean L of a single normal populatior We can also use the fixed significance level approach with the z-test. The only thing we have
where the variance of the population 6” is known. We will assume that a random sample X, (0 do is determine where to place the critical regions for the two-sided and one-sided alternative

X,, ..., X, has been taken from the population. Based on our prevxous discussion, the sampl( hypotheses. First consider the two-sided alternative in Equation 9-10. Now if H: pL =, is true,
mean X is an unbiased point estimator of W with variance 6°/n. the probability is 1 o that the test statistic Z, falls between —Zq/> and Z,/» Where Z» is the 100/,
point of the dard normal d15tnbun0n The regions associated with zq/> and —z,,

HYPOTHESIS TESTS ON THE MEAN are illustrated in Fig. 9-11(a). Note that the probability is o that the test statistic Z, will fall in

the region Z;, > 7, or Zy < 2y, When H : L= is true. Clearly, a sample pmducmg a value

of the test statistic that falls in the tails of the distribution of Z  would be unusual if H: b= p is
Ho:pe= o Hi:p# fo ©-7 true; therefore, it is an indication that His false. Thus, we should reject H,, if either

where 1, is a specified constant. We have a random sample X, X, ..., X, from a normal population.

Suppose that we wish to test the hypotheses

Because X has a normal distribution (i.e., the sampling distribution of X is normal) with mean 2> Zan ©-14)
W, and standard deviation ¢ /\/; if the null hypothesis is true, we could cg.lcu.lale a P-value or or
construct a critical region based on the computed value of the sample mean X, as in Section 9-1.2. 20 <=Zy)2 (9-15)
It is usually more c_om{enignt to ml}dardiu the sample mean and use a test statistic base'd ?n and we should fail to reject H, if
the standard normal distribution. That is, the test procedure for H: L=, uses the test statistic: n <2<z (9-16)
/2 = 40 = La/2 -

Equations 9-14 and 9-15 define the critical region or rejection region for the test. The type I
X Ho error probability for this test procedure is .

T -8 Wemay  develop fixed signi level testing procedures for the one-sided alterna-
tives. Consider the upper-tailed case in Equation 9-10.

If the null hypothesis H,; 1 = |1, is true, E(X) = i, and it follows that the distribution of Z, is ) In defining the critical region for this test, we observe Fhat a negative value of the test sta-
the standard normal distribution [denoted N(0, 1)]. tistic Z would never lead us to conclude that H: i = , is false. Therefore, we would place
the critical region in the upper tail of the standard normal distribution and reject H, if the
computed value z, is too large. Refer to Fig. 9-11(b). That is, we would reject H,, if

Two-tailed test Upper-tailed test Lower-tailed test

Critical region \ / Critical region / Critical region \ 20> 2y 9-17)
a2 Y Aeceptance N o Pocepance_oN¢® e Similarly, to test the lower-tailed case in Equation 9-12, we would calculate the test statistic
2 0 2z 2 o Z —z, o 2 Z, and reject H,, if the value of Z, is too small. That is, the critical region is in the lower tail of
(@ (®) (@ the standard normal distribution as in Fig. 9-11(c), and we reject H,, if
FIGURE 9-11  The distribution of Z, when H,: 1 = 1, is true with critical region for (a) The two-sided alternative
Hy: 1 # 1, (b) The one-sided alternative H,: u > . (c) The one-sided alternative Hi: j1 < p,. W< ©-18)
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Summary of Tests on

the Mean, Variance Testing Hypotheses on the Mean, Variance Known (Z-Tests)

Known

Test statistic:

Alternative
Hypotheses

Zy=

Null hypothesis: H: L= W,

X -l

o /\n

P-Value

Rejection Criterion for Fixed-
Level Tests

Hyip#p

Hy:p>p,

Hyi:p<po
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Probability above |zo| and
probability below —|zy
P=2[1-0(g)]

Probability above z,,
P=1-0(z)

Probability below zo,
P=0 (15

20 > Zas2 OT 20 < —Zas2

20> Za

20 <—Zq

The P-values and critical regions for these situations are shown in Figs. 9-10 and 9-11.




Example 9-2 Propellant Burning Rafe  Air crew escape systems are powered by a solid propellant. The burning

rate of this propellant is an important product characteristic. Specifications require that the mean
burning rate must be 50 centimeters per second. We know that the standard deviation of burning rate is ¢ = 2 centimeters
per second. The experimenter decides to specify a type I error probability or significance level of o = 0.05 and selects a
random sample of n = 25 and obtains a sample average burning rate of x = 51.3 centimeters per second. What conclu-
sions should be drawn?

‘We may solve this problem by following the seven-step procedure outlined in Section 9-1.6. This results in

1. Parameter of interest: The parameter of interest is |1, the mean burning rate.

2. Null hypothesis: H,: p =50 centimeters per second

3. Alternative hypothesis: H: L # 50 centimeters per second
4. Test statistic: The test statistic is
- X—Ho
% c/\n
5. Reject H if: Reject H if the P-value is less than 0.05. To use a fixed significance level test, the boundaries
of the critical region would be z,,; = 1.96 and —z, ,,. = —1.96.
6. Computations: Because x =51.3and 6 =2,
51.3-50
20="—1=—=325
°T 225
7. Conclusion: Because the P-value = 2[1-®(3.25)] = 0.0012 we reject H,: jt = 50 at the 0.05 level of significance.

Practical Interpretation: We conclude that the mean burning rate differs from 50 centimeters per second, based on a
sample of 25 measurements. In fact, there is strong evidence that the mean burning rate exceeds 50 centimeters per second.
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Tests on the Mean of a Normall Distribution,

Variance Unknown

‘We now consider the case of hypothesis testing on the mean of a population with unknown vari-
ance ¢°. The situation is analogous to the one in Section 8-2 where we considered a confidence
interval on the mean for the same situation. As in that section, the validity of the test procedure
we will describe rests on the assumption that the population distribution is at least approximately
normal. The important result on which the test procedure relies is that if X, X, ..., X is arandom
sample from a normal distribution with mean [ and variance 6, the random variable

X-p
T=—
S /\n
has a ¢ distribution with n — 1 degrees of freedom. Recall that we used this result in Section 8-2
to devise the t-confidence interval for p.. Now consider testing the hypotheses
Ho:p=no
We will use the test statistic:

Hip# i,

Test Statistic

(9-26)

If the null hypothesis is true, T, has a ¢ distribution with n — 1 degrees of freedom. When we
know the distribution of the test statistic when H_ is true (this is often called the reference
distribution or the null distribution), we can calculate the P-value from this distribution, or,
if we use a fixed significance level approach, we can locate the critical region to control the
type I error probability at the desired level.
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The single-sample r-test we have just described can also be conducted using the fixed
significance level approach. Consider the two-sided alternative hypothesis. The null hypoth-
esis would be rejected if the value of the test statistic ¢, falls in the critical region defined

by the lower and upper o/2 percentage points of the ¢ distribution with n — 1 degrees of
freedom. That is, reject H , if

to>tajppy OF  To <—lgspp

For the one-tailed tests, the location of the critical region is determined by the direction to which
the inequality in the alternative hypothesis “points.” So, if the alternative is H;: L > W, reject H, if
to > logn
and if the alternative is H,:| < W, reject H if
to < —tgn1
Figure 9-15 provides the locations of these critical regions.

al2

0
®)

o
(0)

~tap,n-1 fano1 “tan-1 To

FIGURE 9-15  The distribution of T, when Hy: 1 = W, is true with critical region for (a) Hy:p # g, (b) Hyzp > g, and
(c) Hyzp < .




Summary for the One-
Sample r-test Testing Hypotheses on the Mean of a Normal Distribution, Variance Unknown
Null hypothesis: Hy:pL=p,

Test statistic: T= Xl

5/\n

Alternative Hypotheses P-Value Rejection Criterion
for Fixed-Level Tests
Hyp# o Probability above fo| and o > to/2,1 0T to < ~ta/2n1
probability below —|t0|
Hyp>p, Probability above 7, o=
Hyp<p, Probability below 7, 10/< a1

The calculations of the P-values and the locations of the critical regions for these
situations are shown in Figs. 9-13 and 9-15, respectively.

Mohamad GHASSANY



Golf Club Design  The increased availability of light materials with high strength has revolution-
ized the design and manufacture of golf clubs, particularly drivers. Clubs with hollow heads and
very thin faces can result in much longer tee shots, especially for players of modest skills. This is due partly to the
“spring-like effect” that the thin face imparts to the ball. Firing a golf ball at the head of the club and measuring the
ratio of the ball’s outgoing velocity to the incoming velocity can quantify this spring-like effect. The ratio of veloci-
ties is called the ient of of the club. An was in which 15 drivers produced by a
particular club maker were selected at random and their i of measured. In the i the golf
balls were fired from an air cannon so that the incoming velocity and spin rate of the ball could be precisely controlled.
It is of interest to determine whether there is evidence (with 0. = 0.05) to support a claim that the mean coefficient of
restitution exceeds 0.82. The observations follow:

0.8411 0.8191 0.8182 0.8125 0.8750
0.8580 0.8532 0.8483 0.8276 0.7983
0.8042 0.8730 0.8282 0.8359 0.8660

The sample mean and sample standard deviation arc ¥ = 0.83725 and s = 0.02456. The normal probability plot of
the data in Fig. 9-16 supports the that the of ion is normally distributed. Because the

iment’s objective is to that the mean ient of exceeds 0.82, a one-sided alternative
hypothesis is appropriate.

Percentage
&

FIGURE 9-16. Normal

probability plot of the 1
coefficient of restitution 078 0.83 0.88
data from Example 9-6. Coefficient of restitution

The solution using the seven-step procedure for hypothesis testing is as follows:
1. Parameter of interest: The parameter of interest is the mean coefficient of restitution, L.
2. Null hypothesis: H,:p=0.82
3. Alternative hypothesis: H, :pu > 0.82 We want to reject H, if the mean coefficient of restitution exceeds 0.82.
4. Test statistic: The test statistic is
Il
s/\n
5. Reject H, if: Reject H, if the P-value is less than 0.05.
6. Computations: Because x = 0.83725, s = 0.02456, p, = 0.82, and n = 15, we have

th=

o= 0.83725-0.82
* 7 002456/ V15
7. Conclusions: From Appendix A Table II we find for a ¢ distribution with 14 degrees of freedom that , = 2.72
falls between two values: 2.624, for which o = 0.01, and 2.977, for which o = 0.005. Because this is a one-tailed
test, we know that the P-value is between those two values, that is, 0.005 < P < 0.01. Therefore, because P < 0.05,
we reject H, and conclude that the mean coefficient of restitution exceeds 0.82.
Practical Interpretation: There is strong evidence to conclude that the mean coefficient of restitution
exceeds 0.82.

=272
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Tests on the Variance and Standard
Deviation of a Normal Distribiition

Tests on the Variance [

hypothesis tests on the variance or standard deviation are needed. ofaNormal | Nyl hypothesis: IRGP=GF,
When the population is modeled by a normal distribution, the tests and intervals described in Distribution (n-1)s?
this section are applicable. Teststatistic:  ¥2 =7

S0
HYPOTHESIS TESTS ON THE VARIANCE . ) L
Alternative Hypothesis Rejection Criteria
Suppose that we wish to test the hypothesis that the variance of a normal population 62 equals A 2> o X<y
a specified value, say o3, or equivalently, that the standard deviation G is equal to 6. Let X, H:0" %0, g ‘;”r"" % IR
-, X, be a random sample of n observations from this population. To test HEod =07 Xé 2N
.2 =52 it S %
Hy:6* =0 H:c6*=0; 9-34) H:6’<cl i S
we will use the test statistic:
Test Statistic
n-1)s?
Xt= (72) (9-35)
Go
If the null hypothesis Ho: 6 = 6 is true, the test statistic Xo defined in Equation 9-35 follows

the chi-square distribution with n — 1 degrees of freedom. This is the reference distribution for  f) fta) f

this test procedure. To perform a fixed significance level test, we would take a random sample X1 Xy X1

from the population of interest, calculate xﬁ, the value of the test statistic xé, and the null hypoth- «l2 «

esis Hy:6> =62 would be rejected if a2 @

Xo> Xarat orif Xo>Xiwn 0 oezanr Xipn ¥ : Kow LI - E

where X&/21 and Xi-a/21 are the upper and lower 1000/2 percentage points of the chi-square
distribution with n—1 degrees of freedom, respectwely Flgure 9-17(a) shows the critical region.

The same test statistic is used for one-sided potheses. For thy ided hypoth
Hy:o’ = o) Hy:6" >0} (9-36)
we would reject H, if X > X1, whereas for the other one-sided hypotheses
Hy:o =03 Hy:6" <o) 9-37)

we would reject H, if xﬁ < xf,u,.,p The one-sided critical regions are shown in Fig. 9-17(b) and (c).

@ ® ©
FIGURE 9-17 Reference distribution for the test of Hy: 6* = 6% with critical region values for (a) H,: * # 62
(b) H:6*>a} . (c) Hi: o’ <o
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Example 9-8 Automated Filling  An automated filling machine is used to fill bottles with liquid detergent.
A random sample of 20 bottles results in a sample variance of fill volume of s* = 0.0153 (fluid

ounces)?. If the variance of fill volume exceeds 0.01 (fluid ounces)?, an unacceptable proportion of bottles will be

underfilled or overfilled. Is there evidence in the sample data to suggest that the manufacturer has a problem with

underfilled or overfilled bottles? Use o = 0.05, and assume that fill volume has a normal distribution.

Using the seven-step procedure results in the following:

1. Parameter of interest: The parameter of interest is the population variance 2

2. Null hypothesis: H: 6> =0.01

3. Alternative hypothesis: H, :c”>0.01 )

4. Test statistic: The test statistic is X§ = n;ii)s

0

wm

. Reject H, if: Use o= 0.05, and reject H; ifXé > xfms,w =30.14

19(0.0153)
0.01

Ly

Computations: Xg = =29.07

ol

Conclusions: Because Xﬁ =29.07< Xg.os.lq = 30.14, we conclude that there is no strong evidence that the variance of
fill volume exceeds 0.01 (fluid ounces)>. So there is no strong evidence of a problem with incorrectly filled bottles.
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Tests on a Population Proportion

LARGE-SAMPLE TESTS ON A PROPORTION

Many engineering problems concern a random variable that follows the binomial distribu- Another form of the test statistic Z, in Equation 9-40 is ionall d. Note that if
'i°“: For example, consider E'Pmd“Cﬁ"“'PmCBSS that it:ems “—'{3‘ are '4 i ; d X is the number of observations in a random sample of size n that belongs to a class of interest,
as either acceptable or defective. Modelling the of d with the then P = X/n is the sample proportion that belongs to that class. Now divide both numerator and
distribution is usually reasonable when the binomial parameter p represents the proportion denominator of Z, in Equation 9-40 by n, giving
of defective items produced. Consequently, many engineering decision problems involve 0
hypothesis testing about p. X/n— P

P 8 aboutp Zo= BP0 ""’/ o Zy= 7\/17’”"/ (9-41)

‘We will consider testing v Po) " po( Po) "
Hy:p=py Hy:p=p 9-39) This presents the test statistic in terms of the sample proportion instead of the number of

An approximate test based on the normal approximation to the binomial will be given. As noted items X in the sample that belongs to the class of interest.
earlier, this approximate procedure will be valid as long as p is not extremely close to 0 or 1,
and if the sample size is relatively large. Let X be the number of observations in a random sam-
ple of size n that belongs to the class associated with p. Then if the null hypothesis H:p = p, is
true, we have X ~ N[np,, np (1 —p,)], approximately. To test H;: p = p, calculate the test statistic

Test Statistic

(9-40)

and determine the P-value. Because the test statistic follows a standard normal distribution
if H, is true, the P-value is calculated exactly like the P-value for the z-tests in Section 9-2.
So for the two-sided alternative hypothesis, the P-value is the sum of the probability in the
standard normal distribution above Iz | and the probability below the negative value —Iz,, or

P=2[1-o(g)]

For the one-sided alternative hypothesis H:p > p,, the P-value is the probability above z, or

P=1-®(z)
and for the one-sided alternative hypothesis H,:p < p,, the P-value is the probability below z,, or
P=0(z)
‘We can also perform a fixed-signil level test. For the two-sided all ive hypothesis,

we would reject Hy: p # p, if
20> Zas2 OF 20 <—Zas2
Critical regions for the ided ive hypotheses would be in the usual manner.
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Summary of
Approximate Tests on a
Binomial Proportion

Mohamad GHASSANY

Testing Hypotheses on a Binomial Proportion
Null hypotheses: H:p=p,
Test statistic: Zy= o
npo (1 —Po )
Alternative P-Value Rejection Criterion for
Hypotheses Fixed-Level Tests

Hy:p#po Probability above|zo| and
, P =2[1-®(z))]

probability below —|z0
Hi:p>p,  Probability above zp, P =1— <I>(z0)
Hy:p<p, Probability below zy, P = ®(z,)

20 > Zas2 0T Zo < —Zg/2

20> 2

20 <—Za




SCILCRRIE Automobile Engine Confroller A semicond I? duces controllers used in
automobile engine appli The quires that the process fallout or fraction defec-
tive at a critical manufacturing step not exceed 0.05 and that the manufacturer demonstrate process capability at this
level of quality using o = 0.05. The semiconductor manufacturer takes a random sample of 200 devices and finds that
four of them are defective. Can the manufacturer demonstrate process capability for the customer?

‘We may solve this problem using the seven-step hypothesis-testing procedure as follows:

1. Parameter of interest: The parameter of interest is the process fraction defective p.
2. Null hypothesis: H: p =0.05
3. Alternative hypothesis: H,:p <0.05

This formulation of the problem will allow the manufacturer to make a strong claim about process capability if the
null hypothesis H: p = 0.05 is rejected.

Test statistic: The test statistic is (from Equation 9-40): z, = e TR

z ”Pv(
where x =4, n =200, and p, = 0.05.

. Reject H, if: Reject H: p = 0.05 if the p-value is less than 0.05.

ol

s »

Computation: The test statistic is

=

. Conclusions: Because z; =-1.95, the P-value is @(~1.95) = 0.0256, so we reject H and conclude that the process
fraction defective p is less than 0.05.

Practical Interpretation: We conclude that the process is capable.
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