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The hypothesis-testing procedures that we have discussed in previous sections are designed for
problems in which the population or probability distribution is known and the hypotheses involve
the parameters of the distribution. Another kind of hypothesis is often encountered: We do not
know the underlying distribution of the population, and we wish to test the hypothesis that a
particular distribution will be satisfactory as a population model. For example, we might wish to
test the hypothesis that the population is normal.

‘We have previously discussed a very useful graphical technique for this problem called prob-
ability plotting and illustrated how it was applied in the case of a normal distribution. In this
section, we describe a formal goodness-of-fit test procedure based on the chi-square distribution.
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Testing for Goodness of Fit

The test procedure requires a random sample of size n from the population whose probability
distribution is unknown. These n observations are arranged in a frequency histogram, having
k bins or class intervals. Let O; be the observed frequency in the ith class interval. From the
hypothesized probability distribution, we compute the expected frequency in the ith class interval,
denoted E;. The test statistic is

Goodness-of-Fit Test Statistic

9.47)

It can be shown that, if the population follows the hypothesized distribution, X% has, approxi-
mately, a chi-square distribution with k — p — 1 degrees of freedom, when p represents the number
of parameters of the hypothesized distribution estimated by sample statistics. This approximation
improves as n increases. We should reject the null hypothesis that the population is the hypothe-
sized distribution if the test statistic is too large. Therefore, the P-value would be the probability
under the chi-square distribution with k — p — 1 degrees of freedom above the computed value of
the test statistic xj or P = P()czﬂkl > ¥2). For a fixed-level test, we would reject the hypothesis
that the distribution of the population is the hypothesized distribution if the calculated value of
the test statistic x2 > X2 fpmt”
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EXAMPLE 9.12 | Printed Circuit Board Defects—
Poisson Distribution

‘The number of defects in printed circuit boards is hypothesized
to follow a Poisson distribution. A random sample of 1 = 60
printed circuit boards has been collected, and the following
number of defects observed.

Number of Defects Obs: Frequel

0 32
2| 15
2) 9
3 4

‘The mean of the assumed Poisson distribution in this example
is unknown and must be estimated from the sample data. The
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estimate of the mean number of defects per board s the sam-
ple average, thatis, (32 - 0+ 15 + 1+9 - 24+4 - 3)/60 =0.75.
From the Poisson distribution with parameter 0.75, we may
compute p, the theoretical, hypothesized probability associ-
ated with the ith class interval. Because each class interval
corresponds to a particular number of defects, we may find
the p, as follows:

15075
P =PX=0)= % —0472
a—
py=PX=1)= %:0,354
-0750.75)2
py=pPx == OB 33

Pa=PX 23)=1-(p, +p,+py) = 0041

The expected frequencies are computed by multiplying the
sample size n = 60 times the probabilities p,. That is, E; = np;.
The expected frequencies follow:

Number of Defects Probability Expected Frequency

0 0472 28.32
1 0.354 21.24
2 0133 7.98
3 (or more) 0041 246

Because the expected frequency in the last cell is less than 3,
we combine the last two cells:

Number of Observed Expected
Defects Frequency Frequency
0 2 28.32
1 15 21.24
2 (or more) 13 10.44

‘The seven-step hypothesis-testing procedure may now be
applied, using o = 0.05, as follows:

1. Parameter of interest: The variable of interest is the
form of the distribution of defects in printed circuit
boards.

N

w

IS

. Test statistic: The test statistic is x

»

ES

=

Null hypothesis: H,: The form of the distribution of
defects is Poisson.

. Alternative hypothesis: H,: The form of the distri-

‘bution of defects is not Poisson.
©,-Ey

. Reject H, if: Because the mean of the Poisson distri-

bution was estimated, the preceding chi-square statistic
will have k —p — 1 =3 — 1 — 1 = 1 degree of freedom.
Consider whether the P-value is less than 0.05.

. Computations:

(2-2832P (1521247 (13- 10447
28.32 2124 1044

=294

Conclusions: We find from Appendix Table III that
Loy =271 and g} s, = 3.84. Because i = 2.94lies
between these values, we conclude that the P-value is
between 0.05 and 0.10. Therefore, because the P-value
exceeds 0.05, we are unable to reject the null hypoth-
esis that the distribution of defects in printed circuit
boards is Poisson. The exact P-value computed from
software is 0.0864.




Contingency Table Tests

Many times the n elements of a sample from a population may be classified according to two )
different criteria. It is then of interest to know whether the two methods of classification are sta- EEEEE Gl An7 X ¢ Contingency Table

tistically independent; for example, we may consider the population of graduating engineers and
R . . . s Columns
may wish to determine whether starting salary is independent of academic disciplines. Assume

that the first method of classification has r levels and that the second method has ¢ levels. We will 1 2 c

let Oy; be the observed frequency for level i of the first classification method and level j of the 1 0y 0y, e 0,,

second classification method. The data would, in general, appear as shown in Table 9.2. Such a Ry 2 o o . o
21 22 2c

table is usually called an X ¢ contingency table.

‘We are interested in testing the hypothesis that the row-and-column methods of cl
are independent. If we reject this hypothesis, we conclude some interaction exists between the two r 0, 0, e 0,
criteria of classification. The exact test procedures are difficult to obtain, but an approximate test
statistic is valid for large n. Let p; be the probability that a randomly selected element falls in
the ijth cell given that the two classifications are independent. Then p;; = u;v;, where u; is the ' 0, EY
probability that a randomly selected element falls in row class i and v; is the probability that a = Z %
randomly selected element falls in column class j. Now by assuming independence, the estimators i=1j=1 i
of u; and v; are

ification

Then, for large n, the statistic

(9.50)

has an approximate chi-square distribution with (» — 1)(c — 1) degrees of freedom if the null

2 Iy 2 1 v hypothesis is true. We should reject the null hypothesis if the value of the test statistic xg is too
"= n 4 0; Vi = - ZOU (948) large. The P-value would be calculated as the probability beyond x3 on the xfriwil) distribution,
=t = orP = P(x(z,_l)(bl) > xé)A For a fixed-level test, we would reject the hypothesis of independence
Therefore, the expected frequency of each cell is if the observed value of the test statistic y3 exceeded 2 .
18 r
Ey=nip, = EZ;O’?Z}O"" (9.49)
= i=
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EXAMPLE 9.14 | Health Insurance Plan Preference

A company has to choose among three health insurance plans.
Management wishes to know whether the preference for plans

The seven-step hypothesis-testing procedure may now be

applied to this problem.

Health Insurance Plan

is independent of job classification and wants to use = 0.05. 1. Parameter of interest: The variable of interest is
The opinions of a random sample of 500 employees are shown employee preference among health insurance plans.
in Table 9.3. 2. Null hypothesis: H,: Preference is independent of
salaried versus hourly ]ob classification.
TABLE93  Observed Data for Example 9.14 3. A i e o ko
pendent of salmed versus hmlrly job classification.
Health Insurance Plan 4. Test statistic: The test statistic is
Job Cl: 1 2 3 Totals 22 (0, Ep?
Salaried workers 160 140 40 340 =
Hourly workers 0 60 6 160 5. Reject Hy if: We will use a fixed-significance level
Totals 200 200 100 500 test with = 0.05. Therefore, because r =2 and c =3,
the degrees of freedom for chi-square are (- — 1)(c — 1)
= (1)) =2, and we would reject H if 2 = 42055 =
To find the expected frequencies, we must first 5.99. ’
compute &, = (340/500) = i1, = (160/500) = 032, _—
9, = (200/500) = 040, 5, = (200/500) = 0.40, and 5, = o Computations:
(100/500) = 0.20. The expected frequencies may now be 5 0, -Ey
computed from Equation 9.49. For example, the expected 2= plt L
number of salaried workers favoring health insurance plan 1 =1 jm E;
is (160 136) _ (140 — 136 (40 — 68)
E,, = ni,¥, = 500(0.68(0.40)) = 136 T 136 68
‘The expected frequencies are shown in Table 9.4. L Uo—6h°  (60-647 (60327
64 32
=49.63
SR Expected Frequencies
for Example 9.14 7. Conclusions: Because y2 =49.63 > x2.., =599,

we reject the hypothesis of independence and conclude
that the preference for health insurance plans is not
independent of job classification. The P-value for
x2=49.63 is P'= 1671 x 10~"". (This value was
computed by computer software.) Further analysis
would be necessary o explore the nature of the

Job Classification 1 2 3 Totals
Salaried workers 136 136 68 340
Hourly workers 64 64 3 160
Totals 200 200 100 500

between these factors. It might be helpful
to examine the table of observed minus expected
frequencies.
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