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Introduction



Machine Learning examples

You probably use it dozens of times a day without even knowing it.

Application examples:

▶ Effective web search.
▶ Social networks recognize friends from photos or suggest friends.
▶ Email spam detection.
▶ Handwriting recognition.
▶ Understanding the human genome.
▶ Medical diagnostics.
▶ Predict possibility for a certain disease on basis of clinical measures.
▶ Fraud detection.
▶ Drive vehicles.
▶ Recommendations (eg, Amazon, Netflix).
▶ Natural language processing.

The aim of ML is to build computer systems that can adapt to their environments and learn form
experience.
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Machine Learning examples1

This is a high-level view of what Netflix
does.

1Savin Goyal - useR’19
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Machine Learning examples2

It is probably necessary to get smarter
about everything:

▶ Content acquisition
▶ Marketing
▶ Discovery
▶ Delivery
▶ and more.

ML gets applied everywhere!

2Savin Goyal - useR’19
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Machine Learning examples3

3Savin Goyal - useR’19
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ML is everywhere
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Machine Learning: Definition

What is Machine Learning?

▶ A science of getting computers to learn without being explicitly programmed4.
▶ Study of algorithms that improve their performance P at some task T with experience E5.

Computer 
Program

a

T: recognition of a handwritten letter “a” from its image.
E: images of a handwritten “a”.
P: recognition rate.

4Arthur Samuel.
5Tom Mitchell.
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Types of Machine Learning Problems

In general, any machine learning problem can be assigned to one of two broad types:
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Supervised Learning



Example: House price prediction6

Let’s say we want to predict housing prices. We plot a data set and it looks like this:

Let’s say we own a house that is, say 750 square feet and hoping to sell the house and we want to
know how much we can get for the house.

6Examples from Andrew Ng’s MOOC.
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Example: Medical diagnosis

Let’s say a person has a breast tumor, and her breast tumor size is known.

▶ The machine learning question here is, can you estimate what is the probability that a tumor is
malignant versus benign?
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Example: Medical diagnosis

Let’s say that we know both the age of the patients and the tumor size. In that case maybe the data
set will look like this.
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Supervised Learning: Definition & Model

The term supervised learning refers to the fact that we gave the algorithm a data set in which the
“right answers” (known as labels) were given.

Training Set

Learning Algorithm

f TargetFeatures

▶ Supervised Learning refers to a set of approaches for estimating f.
▶ f is also called hypothesis in Machine Learning.
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Regression vs Classification

Regression

▶ The example of the house price prediction
is also called a regression problem.

▶ A regression problem is when we try to
predict a quantitative (continuous) value
output. Namely the price in the example.

Classification

▶ The process for predicting qualitative
(categorical, discrete) responses is known
as classification.

▶ Methods: Logistic regression, Support
Vector Machines, etc..
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Supervised Learning: Notations

Notations:

▶ The size of the house in the first example, tumor size and age in the second example, are the
input variables. Typically denoted by X.

▶ The inputs go by different names, such as predictors, independent variables, features, predictor or
sometimes just variables.

▶ The house price in the first example and the diagnosis in the second example are the output
variables, and are typically denoted using the symbol Y.

▶ The output variable is often called the response, dependent variable or target.
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Unsupervised Learning



Unsupervised Learning: “No labels’ ’

In Unsupervised Learning, we’re given data that doesn’t have any labels.

For example:

Question: Can you find some structure in the data?
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Unsupervised Learning: Example

One example where clustering is used is in Google News (news.google.com)
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Types of Machine Learning Problems

Machine Learning Types

Supervised Learning

Continuous
Target Variable

Regression

House Price
Prediction

Categorical
Target Variable

Classification

Medical diagnosis

Unsupervised Learning

Target Variable
Not Available

Clustering

Customer seg-
mentation
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Linear Regression



Regression
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Let:
▶ n: sample size
▶ x: features
▶ y: target variable
▶ (x(i),y(i)): one sample, a training

example
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Simple Linear Regression
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▶ Hypothesis: f(x) = fω(x) = ω0 +ω1x

▶ Choose ω0 and ω1 so that fω(x) is close to y

▶ Cost function J(ω) =

▶ How to calculate ω?
• GD
• OLS
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Cost function intuition

Simple linear regression

▶ Model: fω(x) = ω0 +ω1x = ω ′x

▶ Parameters: ω0 and ω1

▶ Cost function: J(ω0,ω1) =
1

2n
∑n

i=1
(
fω

(
x(i)

)
− y(i)

)2

▶ Goal: minω0,ω1 J(ω0,ω1)

Suppose a simplified hypothesis (with 1 parameter):

▶ Model: Let fω(x) = ω1x = ω ′x

▶ Parameter: ω1

▶ Cost function: J(ω1) =
1

2n
∑n

i=1
(
fω

(
x(i)

)
− y(i)

)2
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Cost function intuition

Let the following example:
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Cost function intuition

Simple linear regression
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Multiple Linear Regression

▶ Let p features: x1, x2, . . . , xp
▶ Multiple linear regression: f(x) = fω(x) = ω0 +ω1x1 + . . . +ωpxp

Linear Regression with 2 features
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Multiple Linear Regression

▶ Let p variables: x1, x2, . . . , xp
▶ Multiple linear regression: f(x) = fω(x) = ω0 +ω1x1 + . . . +ωpxp

▶ Define x0 = 1, and

ω =


ω0

ω1
...

ωp

 x =


x0

x1
...
xp


▶ Using matrices: fω(x) = ω ′x

▶ Methods to estimate ω:
• OLS
• GD

▶ Cost function J(ω) = 1
2n

∑n
i=1

(
fω

(
x(i)

)
− y(i)

)2
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Gradient descent



Gradient descent: algorithm

▶ Let a function J(θ)

▶ Goal: Find θ that minimizes J(θ), e.g. θ = argminθ J(θ)

▶ Algorithm:
• initialize θ randomly
• repeat until convergence{

θnew = θold − αJ ′(θ)

}
▶ α is the learning rate
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Gradient descent: convex functions

Convex function

▶ f is convex if f (λx1 + (1 − λ)x2) ⩽ λf (x1) + (1 − λ)f (x2) , ∀x1 and x2 ∈ df, λ ∈ (0, 1).
▶ f is convex iff f ′′ ⩾ 0
▶ A convex funtion has a global minimum
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Gradient descent: example

▶ Let J(θ) = θ2

▶ So J ′(θ) = 2θ
▶ Let α = 0.1
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Gradient descent: choosing α

▶ J(θ) must decrease after each iteration
▶ Define the convergence
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▶ If α is too small, slow convergence
▶ If α is too large, convergence is not guaranteed
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Gradient descent: function of two variables

▶ Let a function J(θ0, θ1)

▶ Goal: find (θ0, θ1) that minimize J(θ0, θ1), e.g. argmin(θ0,θ1) J(θ0, θ1)

▶ Algorithm:
• initialize (θ0,θ1) randomly
• repeat until convergence{

θnew
0 = θold

0 − α
∂

∂θ0
J(θ0, θ1)

θnew
1 = θold

1 − α
∂

∂θ1
J(θ0, θ1)

}

▶ α is the learning rate
▶ Same principle if J is a function of more variables
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Gradient descent: function of two variables
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Gradient descent for linear regression

Simple linear regression

▶ Model: fω(x) = ω0 +ω1x = ω ′x

▶ Parameters: ω0 and ω1

▶ Cost function: J(ω0,ω1) =
1

2n
∑n

i=1
(
fω

(
x(i)

)
− y(i)

)2

▶ Goal: minω0,ω1 J(ω0,ω1)

Algorithm

▶ initialize (ω0,ω1) randomly
▶ repeat until convergence{

ωnew
i = ωold

i − α
∂

∂ωi

J(ω0,ω1)

for i = 0 and i = 1

}

Algorithm

▶ initialize (ω0,ω1) randomly
▶ repeat until convergence{

ωnew
0 = ωold

0 − α
1
n

n∑
i=1

(
fω

(
x(i)

)
− y(i)

)
ωnew

1 = ωold
1 − α

1
n

n∑
i=1

(
fω

(
x(i)

)
− y(i)

)
.x(i)

}
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Gradient descent for multiple linear regression

Multiple linear regression

▶ Model: fω(x) = ω0 +ω1x1 + . . . +ωpxp = ω ′x

▶ Parameters: ω0,ω1, . . . ,ωp

▶ Cost function: J(ω) = 1
2n

∑n
i=1

(
fω

(
x(i)

)
− y(i)

)2

Algorithm

▶ initialize the ωi randomly
▶ repeat until convergence{

ωnew
i = ωold

i − α
∂

∂ωi

J(ω) simultaneously for every i = 0, . . . ,p

}
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Gradient descent for multiple linear regression

Algorithm

▶ initialize the ωi randomly
▶ repeat until convergence{

ωnew
0 = ωold

0 − α
1
n

n∑
i=1

(
fω

(
x(i)

)
− y(i)

)
.x(i)0

ωnew
1 = ωold

1 − α
1
n

n∑
i=1

(
fω

(
x(i)

)
− y(i)

)
.x(i)1

...

ωnew
p = ωold

p − α
1
n

n∑
i=1

(
fω

(
x(i)

)
− y(i)

)
.x(i)p

}
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Remarks

Gradient descent

▶ Gradient descent (“Batch” version): each step uses all the training examples
▶ Features must be scaled
▶ We must choose α

▶ There is more advanced gradient based algorithms

Normal equation

▶ OLS leads to an analytical solution
▶ θ = (X′X)−1X′y

▶ No need to choose α neither to iterate
▶ Need to compute (X′X)−1

▶ Slow if p is large
▶ What if (X′X)−1 is non-invertible?
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Regression: Some important questions

When we perform multiple linear regression, we usually are interested in answering a few important
questions.

1. Is at least one of the predictors X1,X2, . . . ,Xp useful in predicting the response?
2. Do all the predictors help to explain y, or is only a subset of the predictors useful?
3. How well does the model fit the data?
4. Given a set of predictor values, what response value should we predict, and how accurate is our

prediction?

Mohamad GHASSANY Gradient descent 37 / 43



Regression: example

Coefficient Std. error t-statistic p-value

Constant 2.939 0.3119 9.42 <0.0001
X1 0.046 0.0014 32.81 <0.0001
X2 0.189 0.0086 21.89 <0.0001
X3 -0.001 0.0059 -0.18 0.8599

In this table we have the following model

Y = 2.939 + 0.046X1 + 0.189X2 − 0.001X3
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Assessing model accuracy &
Bias/Variance Trade-off



Sampling: Train/test split
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Model accuracy: Regression

Regression
MSE (Mean Squared Error) = 1

n

∑n
i=1(f(x

(i)) − y(i))2
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Model accuracy: Classification
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Bias/Variance Trade-off (Underfitting & Overfitting)
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