Machine Learning

Lecture 2 : Introduction to Classification, Logistic Regression

Mohamad GHASSANY

EFREI PARIS

Classification

- ► Email: Spam / Not Spam?
- Online Transactions: Fraudulent (Yes/No)?
- ► Tumor: Malignant / Benign?
- ▶ Loan Demand (Credit Risk): Safe / Risky

- ▶ Email: Spam / Not Spam?
- Online Transactions: Fraudulent (Yes/No)?
- ▶ Tumor: Malignant / Benign?
- ▶ Loan Demand (Credit Risk): Safe / Risky

Classification: categorical output

- ▶ $y \in \{0, 1\}$
- ▶ 0: "Negative class"
- ▶ 1: "Positive Class"

- ► Email: Spam / Not Spam?
- Online Transactions: Fraudulent (Yes/No)?
- ▶ Tumor: Malignant / Benign?
- ▶ Loan Demand (Credit Risk): Safe / Risky

Classification: categorical output

- ▶ $y \in \{0, 1\}$
- ▶ 0: "Negative class"
- ▶ 1: "Positive Class"

.. and also multiclass classification

$\label{eq:Accuracy} \mathsf{Accuracy} = \frac{\mathsf{Number of data points classified correctly}}{\mathsf{all data points}}$

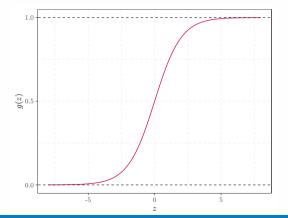
Confusion Matrix

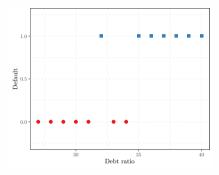
.. while in Regression (continuous output): Mean Squared Error (MSE).

Logistic Regression

$$g(z) = \frac{e^z}{1 + e^z} = \frac{1}{1 + e^{-z}}$$

$$g(z) = rac{e^z}{1+e^z} = rac{1}{1+e^{-z}}$$





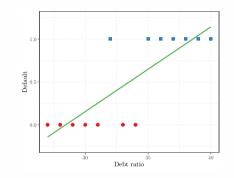
- ▶ y ∈ {0, 1}:
 - "0": Negative class (here no default)
 - "1": Positive class (here default)

f_{$$\omega$$}(x) = ω' x can be > 1 ou < 0 !

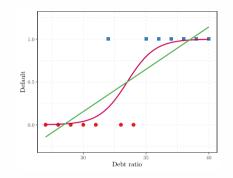
• Ideally
$$0 \leq f_{\omega}(x) \leq 1$$
 s.t.:

• If $f_{\omega}(x) \ge 0.5$, predict "y = 1"

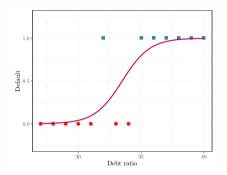
• If
$$f_{\omega}(x) < 0.5$$
, predict " $y = 0$ "



• Let
$$f_{\omega}(x) = \omega x = g(\omega' x) = \frac{1}{1 + e^{-\omega' x}}$$



- ► $0 \leq g(\omega' x) \leq 1$
- $f_{\omega}(x) = g(\omega' x) = \text{estimated probability}$ that y = 1 on input x
- Probability that y = 1, given x, parameterized by ω
- $\blacktriangleright g(\omega'x) = p(y = 1 \mid x) = p(x)$
- $\blacktriangleright \ y \in \{0,1\}$ so $p(y=1 \mid x) + p(y=0 \mid x) = 1$



logistic score

$$p(x) = p(y = 1 | x) = \frac{e^{\omega' x}}{1 + e^{\omega' x}} = \frac{1}{1 + e^{-\omega' x}}$$

odds (côtes)

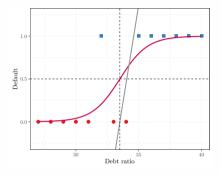
$$\frac{\mathbf{p}(\mathbf{x})}{1-\mathbf{p}(\mathbf{x})} = e^{\omega' \mathbf{x}}$$

log-odds or logit (logarithme des côtes)

$$\log\big(\frac{p(x)}{1-p(x)}\big) = \omega' x$$

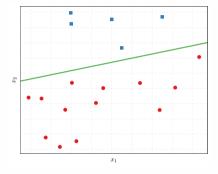
Logistic Regression: decision boundary

1



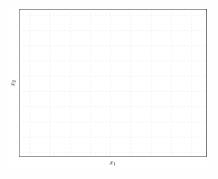
▶ We predict "y = 1" if $p(x) \ge 0.5$ which means $\omega'x \ge 0$

•
$$\omega_0 + \omega_1 x \ge 0 \Rightarrow x \ge -\frac{\omega_0}{\omega_1}$$



- $p(x) = p(y = 1 | x) = f_{\omega}(x) = g(\omega' x)$
- \blacktriangleright Predict "y=1 " if $p(x) \geqslant 0.5$ which means $\omega' x \geqslant 0$
- $\blacktriangleright \ \omega_0 + \omega_1 x_1 + \omega_2 x_2 \geqslant 0 \ \text{So}$

$$\mathbf{x}_2 \geqslant -\frac{\omega_1}{\omega_2}\mathbf{x}_1 - \frac{\omega_0}{\omega_2}$$

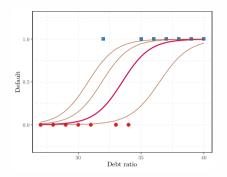


• Let $f_{\omega}(x) = g(\omega_0 + \omega_1 x_1 + \omega_2 x_2 + \omega_3 x_1^2 + \omega_4 x_2^2)$

- ▶ For example, predict "y = 1" if $-1 + x_1^2 + x_2^2 \ge 0$
- Or, $f_{\omega}(x) = g(\omega_0 + \omega_1 x_1 + \omega_2 x_2 + \omega_3 x_1^2 + \omega_4 x_1^2 x_2 + \omega_5 x_1^2 x_2^2 + \ldots)$

Logistic Regression: model estimation

- Parameters to estimate: ω = {ω₀, ω₁} if univariate
- $\omega = \{\omega_0, \omega_1, \dots, \omega_p\}$ if multivariate with p features
- How to choose parameters ω ?



¹check: https://shinyserv.es/shiny/log-maximum-likelihood/, by Eduardo García Portugués

Cost function of simple linear regression

- Model: $f_{\omega}(x) = \omega_0 + \omega_1 x = \omega' x$
- ▶ Parameters: ω_0 and ω_1
- Cost function: $J(\omega_0, \omega_1) = \frac{1}{n} \sum_{i=1}^{n} \frac{1}{2} (f_{\omega}(x^{(i)}) y^{(i)})^2$
- ► Goal: $\min_{\omega_0,\omega_1} J(\omega_0,\omega_1)$

Non-convex in case of logistic regression !

- How to choose parameters ω ?
- ▶ $y \in \{0, 1\}$, Let's assume:

$$\begin{split} p(y = 1 \mid x, \omega) &= f_{\omega}(x) \\ p(y = 0 \mid x, \omega) &= 1 - f_{\omega}(x) \end{split}$$

- How to choose parameters ω ?
- ▶ $y \in \{0, 1\}$, Let's assume:

$$\begin{split} p(y = 1 \mid x, \omega) &= f_{\omega}(x) \\ p(y = 0 \mid x, \omega) &= 1 - f_{\omega}(x) \end{split}$$

• We represent
$$y \mid x, \omega \sim \mathcal{B}(f_{\omega}(x))$$

▶ We can write:

$$p(y | x, \omega) = (f_{\omega}(x))^{y} (1 - f_{\omega}(x))^{1-y} \qquad y \in \{0, 1\}$$

- How to choose parameters ω ?
- ▶ $y \in \{0, 1\}$, Let's assume:

$$\begin{split} p(y = 1 \mid x, \omega) &= f_{\omega}(x) \\ p(y = 0 \mid x, \omega) &= 1 - f_{\omega}(x) \end{split}$$

• We represent
$$y \mid x, \omega \sim \mathcal{B}(f_{\omega}(x))$$

▶ We can write:

$$p(y | x, \omega) = (f_{\omega}(x))^{y} (1 - f_{\omega}(x))^{1-y} \qquad y \in \{0, 1\}$$

Given the n observations and assuming independance, we estimate ω by maximizing the likelihood:

$$\mathcal{L}(\boldsymbol{\omega}) = \prod_{i=1}^{n} p\left(\boldsymbol{y}^{(i)} \mid \boldsymbol{x}^{(i)}, \boldsymbol{\omega}\right)$$

► The likelihood:

$$\begin{split} \mathcal{L}(\boldsymbol{\omega}) &= \prod_{i=1}^{n} p\left(\boldsymbol{y}^{(i)} \mid \boldsymbol{x}^{(i)}, \boldsymbol{\omega}\right) \\ &= \prod_{i=1}^{n} \left(f_{\boldsymbol{\omega}}\left(\boldsymbol{x}^{(i)}\right)\right)^{\boldsymbol{y}^{(i)}} \left(1 - f_{\boldsymbol{\omega}}\left(\boldsymbol{x}^{(i)}\right)\right)^{1 - \boldsymbol{y}^{(i)}} \end{split}$$

► The likelihood:

$$\begin{split} \mathcal{L}(\omega) &= \prod_{i=1}^{n} p\left(y^{(i)} \mid x^{(i)}, \omega\right) \\ &= \prod_{i=1}^{n} \left(f_{\omega}\left(x^{(i)}\right)\right)^{y^{(i)}} \left(1 - f_{\omega}\left(x^{(i)}\right)\right)^{1 - y^{(i)}} \end{split}$$

Maximizing the likelihood is same as maximizing its log:

$$\begin{split} \ell(\omega) &= \log\left(\mathcal{L}(\omega)\right) \\ &= \sum_{i=1}^{n} y^{(i)} \log f_{\omega}\left(x^{(i)}\right) + \left(1 - y^{(i)}\right) \log\left(1 - f_{\omega}\left(x^{(i)}\right)\right) \end{split}$$

• Maximizing $\ell(\omega)$ is same as minimizing: $-\frac{1}{n}\ell(\omega)$

► The likelihood:

$$\begin{split} \mathcal{L}(\omega) &= \prod_{i=1}^{n} p\left(y^{(i)} \mid x^{(i)}, \omega\right) \\ &= \prod_{i=1}^{n} \left(f_{\omega}\left(x^{(i)}\right)\right)^{y^{(i)}} \left(1 - f_{\omega}\left(x^{(i)}\right)\right)^{1 - y^{(i)}} \end{split}$$

Maximizing the likelihood is same as maximizing its log:

$$\begin{split} \ell(\omega) &= \log\left(\mathcal{L}(\omega)\right) \\ &= \sum_{i=1}^{n} y^{(i)} \log f_{\omega}\left(x^{(i)}\right) + \left(1 - y^{(i)}\right) \log\left(1 - f_{\omega}\left(x^{(i)}\right)\right) \end{split}$$

• Maximizing $\ell(\omega)$ is same as minimizing: $-\frac{1}{n}\ell(\omega)$

► Let $J(\omega) = -\frac{1}{n}\ell(\omega)$, a convex cost function for the logistic regression model (known as *binary* cross entropy).

▶ Goal: Find ω s.t. $\omega = \operatorname{argmin}_{\omega} J(\omega)$

•
$$J(\omega) = -\frac{1}{n} \sum_{i=1}^{n} y^{(i)} \log f_{\omega} (x^{(i)}) + (1 - y^{(i)}) \log (1 - f_{\omega} (x^{(i)}))$$

Contrary to the linear regression, this cost function does not have an analytical solution. We need an optimization technique.

▶ Goal: Find ω s.t. $\omega = \operatorname{argmin}_{\omega} J(\omega)$

•
$$J(\omega) = -\frac{1}{n} \sum_{i=1}^{n} y^{(i)} \log f_{\omega} (x^{(i)}) + (1 - y^{(i)}) \log (1 - f_{\omega} (x^{(i)}))$$

Contrary to the linear regression, this cost function does not have an analytical solution. We need an optimization technique.

GD for logistic regression

- ▶ initialize ω 'randomly"
- repeat until convergence{

$$\omega_{i}^{new} = \omega_{i}^{old} - \alpha \frac{\partial J(\omega)}{\partial \omega_{i}}$$

simultaneously for $i=0,\ldots,p$ }

• Recall that
$$g(z) = \frac{e^z}{1 + e^z} = \frac{1}{1 + e^{-z}}$$

• Notice that
$$g'(z) = g(z)(1 - g(z))$$

• Recall that
$$g(z) = \frac{e^z}{1 + e^z} = \frac{1}{1 + e^{-z}}$$

• Notice that
$$g'(z) = g(z)(1 - g(z))$$

•
$$\frac{\partial J(\omega)}{\partial \omega_i} = (y - f_\omega(x))x_i$$

• Recall that
$$g(z) = \frac{e^z}{1 + e^z} = \frac{1}{1 + e^{-z}}$$

• Notice that
$$g'(z) = g(z)(1 - g(z))$$

•
$$\frac{\partial J(\omega)}{\partial \omega_i} = (y - f_\omega(x))x_i$$

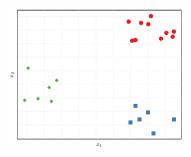
GD for logistic regression

- ▶ initialize ω randomly
- repeat until convergence{

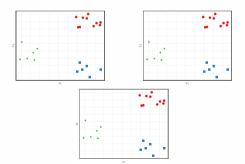
$$\boldsymbol{\omega}_{i}^{\text{new}} = \boldsymbol{\omega}_{i}^{\text{old}} - \alpha \frac{1}{n} \sum_{i=1}^{n} \left(f_{\boldsymbol{\omega}} \left(\boldsymbol{x}^{(i)} \right) - \boldsymbol{y}^{(i)} \right) . \boldsymbol{x}_{i}^{(i)}$$

simultaneously for $i=0,\ldots,p$ }

- ▶ Weather: Sunny, Cloudy, Rain, Snow
- Medical diagrams: Not ill, Cold, Flu
- News articles: Sport, Education, Technology, Politics



- $f_{\omega}^{(i)}(x) = P(y = 1|x, \omega)$ for i = 1, 2, 3
- Train a logistic regression classifier for each class i to predict the probability that y = i
- \blacktriangleright On a new input x, to make a prediction, pick the class i that maximizes $f_{\varpi}^{(i)}(x)$



- Very famous method and maybe the most used
- Adapted for a binary y
- Relation with linear regression
- Linear decision boundary, but can be non linear using other hypothesis
- Direct calculation of p(y = 1 | x)

Machine Learning

Lecture 2bis: Regularization

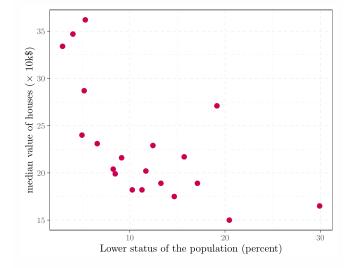
Mohamad GHASSANY

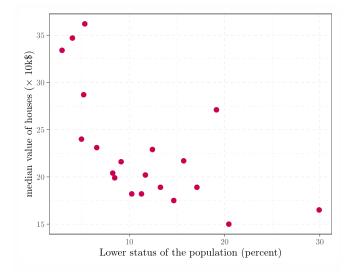
EFREI Paris

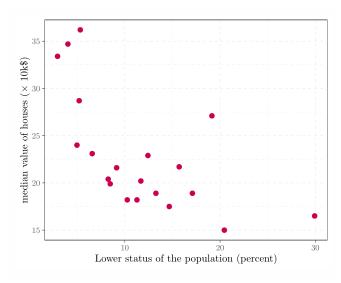
- Supervised learning
- Target variable type
- Hypothesis
- Cost function
- Optimization
- Sampling

The problem of overfitting

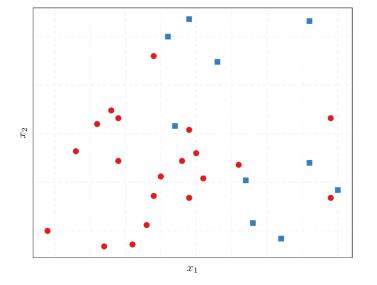
Overfitting: Regression example

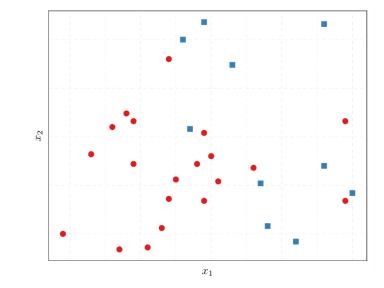


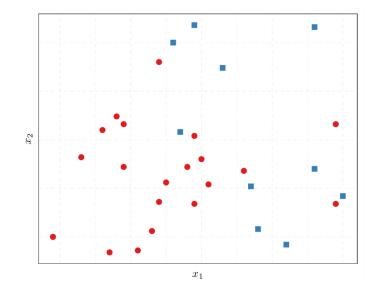




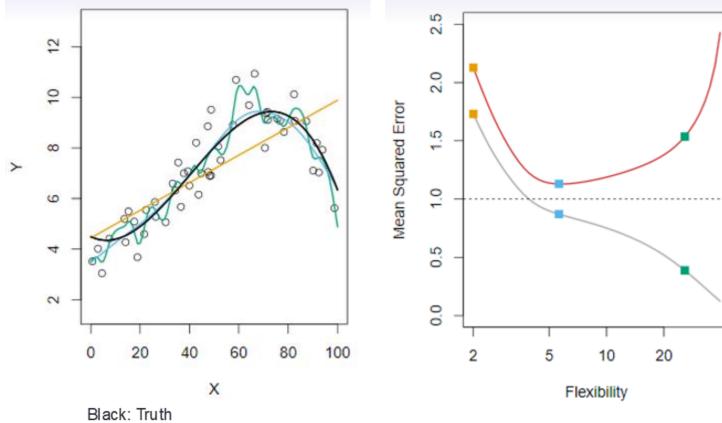
Overfitting: Logistic Regression example





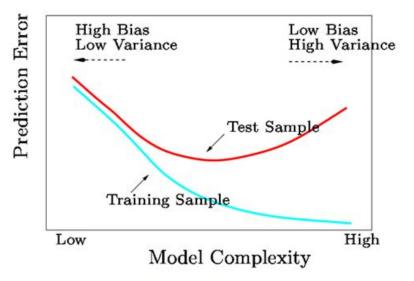


Underfitting/Overfitting Trade off



Black: Truth Orange: Linear Estimate Blue: smoothing spline Green: smoothing spline (more flexible)

RED: Test MES Grey: Training MSE Dashed: Minimum possible test MSE (irreducible error)



We must always keep this picture in mind when choosing a learning method. More flexible/complicated is not always better!

• Options:

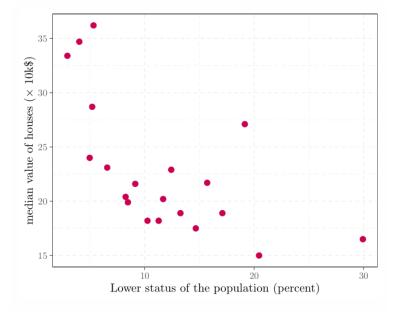
1. Reduce number of features

- Manually
- Model selection

2. Regularization

- Keep all the features, but reduce magnitude/values of parameters ω_i
- Works well when we have a lot of features, each of which contributes a bit to predicting y
- It may not be immediately obvious why such a constraint should improve the fit, but it turns out that shrinking the coefficient estimates can significantly reduce their variance

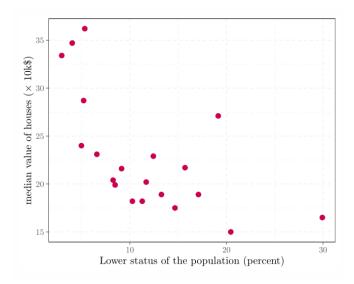
Regularization: Cost function



$$J(\omega) = \frac{1}{2n} \sum_{i=1}^{n} (f_{\omega}(x^{(i)}) - y^{(i)})^{2} +$$

•
$$J(\omega) = \frac{1}{2n} \left[\sum_{i=1}^{n} \left(f_{\omega}(x^{(i)}) - y^{(i)} \right)^2 + \lambda \sum_{j=1}^{p} w_j^2 \right]$$

- Choice of λ
 - What happens if λ is large ?



• Ridge Regression

$$J(\omega) = \frac{1}{2n} \sum_{i=1}^{n} (f_{\omega}(x^{(i)}) - y^{(i)})^{2} +$$

• Lasso

$$J(\omega) = \frac{1}{2n} \sum_{i=1}^{n} (f_{\omega}(x^{(i)}) - y^{(i)})^{2} +$$

- Neither ridge regression nor the lasso will universally dominate the other
- In general, one might expect the lasso to perform better when the response is a function of only a relatively small number of predictors.
- However, the number of predictors that is related to the response is never known *a priori* for real data sets.
- A technique such as cross-validation can be used in order to determine which approach is better on a particular dataset.
- Cross-validation: we choose a grid of λ values, and compute the cross-validation error rate for each value of λ. We then select the value for which the cross-validation error is smallest.

Regularization for Linear Regression

•
$$J(\omega) = \frac{1}{2n} \left[\sum_{i=1}^{n} (f_{\omega}(x^{(i)}) - y^{(i)})^2 + \lambda \sum_{j=1}^{p} w_j^2 \right]$$

- $\min_{\omega} J(\omega)$
- Using **GD**:
 - initialize ω_i randomly
 - repeat until convergence{
 - $\omega_0^{new} = \omega_0^{old} \alpha \frac{1}{n} \sum_{i=1}^n (f_\omega(x^{(i)}) y^{(i)})$

•
$$\omega_{j}^{new} = \omega_{j}^{old} - \alpha \frac{1}{n} \sum_{i=1}^{n} (f_{\omega}(x^{(i)}) - y^{(i)}) \cdot x_{j}^{(i)}$$

simultaneously for every j = 1, ..., p

•
$$\omega_j^{new} = \omega_j^{old} (1 - \alpha \frac{\lambda}{n}) - \alpha \frac{1}{n} \sum_{i=1}^n (f_\omega(x^{(i)}) - y^{(i)}) \cdot x^{(i)}$$

• $(1 - \alpha \frac{\lambda}{n})$ will always be less than 1

- $J(\omega) = \frac{1}{2n} \left[\sum_{i=1}^{n} (f_{\omega}(x^{(i)}) y^{(i)})^2 + \lambda \sum_{j=1}^{p} w_j^2 \right]$
- $\min_{\omega} J(\omega)$
- $\omega = (X'X)^{-1}X'y$

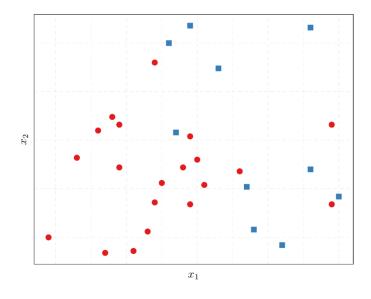
• Using regularization takes care also of non-invertibility problem

Regularization for Logistic Regression

Regularized Logistic Regression

•
$$J(\omega) = -\frac{1}{n} \sum_{i=1}^{n} y^{(i)} \log f_{\omega}(x^{(i)}) + (1 - y^{(i)}) \log (1 - f_{\omega}(x^{(i)})) + \frac{\lambda}{2n} \sum_{j=1}^{p} \omega_j^2$$

• $\min_{\omega} J(\omega)$



- Using **GD**:
 - initialize ω_i randomly
 - repeat until convergence{

•
$$\omega_0^{new} = \omega_0^{old} - \alpha \frac{1}{n} \sum_{i=1}^n (f_\omega(x^{(i)}) - y^{(i)})$$

•
$$\omega_j^{new} = \omega_j^{old} - \alpha \left[\frac{1}{n} \sum_{i=1}^n \left(f_\omega(x^{(i)}) - y^{(i)} \right) \cdot x^{(i)} + \frac{\lambda}{n} \omega_j \right]$$
 simultaneously for every $j = 1, ..., p$