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Classification



Classification examples

▶ Email: Spam / Not Spam?
▶ Online Transactions: Fraudulent (Yes/No)?
▶ Tumor: Malignant / Benign?
▶ Loan Demand (Credit Risk): Safe / Risky

Classification: categorical output

▶ y ∈ {0, 1}
▶ 0: “Negative class”
▶ 1: “Positive Class”

.. and also multiclass classification
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Evaluating Classifiers

Accuracy =
Number of data points classified correctly

all data points

Confusion Matrix

.. while in Regression (continuous output): Mean Squared Error (MSE).
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Logistic Regression



The logistic function (sigmoid)

g(z) =
ez

1 + ez
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Logistic Regression: why not linear regression
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▶ y ∈ {0, 1}:
• "0": Negative class (here no default)
• "1": Positive class (here default)

▶ fω(x) = ω ′x can be > 1 ou < 0 !

▶ Ideally 0 ⩽ fω(x) ⩽ 1 s.t.:
• If fω(x) ⩾ 0.5, predict “y = 1”
• If fω(x) < 0.5, predict “y = 0”
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Logistic Regression: intuition (1)

▶ Let fω(x) = ω ′x
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Logistic Regression: intuition (2)

▶ Let fω(x) =��HHω ′x = g(ω ′x) =
1

1 + e−ω′x

0.0

0.5

1.0

30 35 40

Debt ratio

D
ef
au

lt

Mohamad GHASSANY Logistic Regression 7 / 20



Logistic Regression: intuition (3)

▶ 0 ⩽ g(ω ′x) ⩽ 1
▶ fω(x) = g(ω ′x) = estimated probability

that y = 1 on input x

▶ Probability that y = 1, given x,
parameterized by ω

▶ g(ω ′x) = p(y = 1 | x) = p(x)

▶ y ∈ {0, 1} so p(y = 1 | x) + p(y = 0 | x) = 1
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Logistic Regression: odds & log-odds (logit)

logistic score

p(x) = p(y = 1 | x) =
eω

′x

1 + eω
′x

=
1

1 + e−ω′x

odds (côtes)
p(x)

1 − p(x)
= eω

′x

log-odds or logit (logarithme des côtes)

log
( p(x)

1 − p(x)

)
= ω ′x
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Logistic Regression: decision boundary



Logistic Regression: decision boundary
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▶ We predict "y = 1" if p(x) ⩾ 0.5 which
means ω ′x ⩾ 0

▶ ω0 +ω1x ⩾ 0 ⇒ x ⩾ −
ω0

ω1
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Logistic Regression: decision boundary (2 features)

x1

x
2

▶ p(x) = p(y = 1 | x) = fω(x) = g(ω ′x)

▶ Predict “y = 1” if p(x) ⩾ 0.5 which means
ω ′x ⩾ 0

▶ ω0 +ω1x1 +ω2x2 ⩾ 0 So

x2 ⩾ −
ω1

ω2
x1 −

ω0

ω2
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Non linear decision boundaries

x1

x
2

▶ Let
fω(x) = g(ω0 +ω1x1 +ω2x2 +ω3x

2
1 +ω4x

2
2)

▶ For example, predict “y = 1” if
−1 + x2

1 + x2
2 ⩾ 0

▶ Or, fω(x) = g(ω0 +ω1x1 +ω2x2 +ω3x
2
1 +

ω4x
2
1x2 +ω5x

2
1x

2
2 + . . .)
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Logistic Regression: model estimation



Logistic Regression: model estimation1

▶ Parameters to estimate: ω = {ω0,ω1} if
univariate

▶ ω = {ω0,ω1, . . . ,ωp} if multivariate with p

features

▶ How to choose parameters ω?
0.0

0.5

1.0

30 35 40

Debt ratio

D
ef
au

lt

1check: https://shinyserv.es/shiny/log-maximum-likelihood/, by Eduardo García Portugués
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Recall the cost function of linear regression

Cost function of simple linear regression

▶ Model: fω(x) = ω0 +ω1x = ω ′x

▶ Parameters: ω0 and ω1

▶ Cost function: J(ω0,ω1) =
1
n

∑n
i=1

1
2

(
fω

(
x(i)

)
− y(i)

)2

▶ Goal: minω0,ω1 J(ω0,ω1)

Non-convex in case of logistic regression !
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Logistic Regression: how to estimate the parameters

▶ How to choose parameters ω?
▶ y ∈ {0, 1}, Let’s assume:

p(y = 1 | x,ω) = fω(x)

p(y = 0 | x,ω) = 1 − fω(x)

▶ We represent y | x,ω ∼ B(fω(x))

▶ We can write:
p(y | x,ω) = (fω(x))

y (1 − fω(x))
1−y

y ∈ {0, 1}

▶ Given the n observations and assuming independance, we estimate ω by maximizing the
likelihood:

L(ω) =

n∏
i=1

p
(
y(i) | x(i),ω

)
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Logistic Regression: model estimation
▶ The likelihood:

L(ω) =

n∏
i=1

p
(
y(i) | x(i),ω

)
=

n∏
i=1

(
fω

(
x(i)

))y(i) (
1 − fω

(
x(i)

))1−y(i)

▶ Maximizing the likelihood is same as maximizing its log:

ℓ(ω) = log (L(ω))

=

n∑
i=1

y(i) log fω
(
x(i)

)
+
(
1 − y(i)

)
log

(
1 − fω

(
x(i)

))
▶ Maximizing ℓ(ω) is same as minimizing: − 1

n
ℓ(ω)

▶ Let J(ω) = − 1
n
ℓ(ω), a convex cost function for the logistic regression model (known as binary

cross entropy).
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Logistic Regression: optimization of the cost function

▶ Goal: Find ω s.t. ω = argminω J(ω)

▶ J(ω) = −
1
n

n∑
i=1

y(i) log fω
(
x(i)

)
+
(
1 − y(i)

)
log

(
1 − fω

(
x(i)

))
▶ Contrary to the linear regression, this cost function does not have an analytical solution. We need

an optimization technique.

GD for logistic regression

▶ initialize ω ‘randomly“
▶ repeat until convergence{

ωnew
i = ωold

i − α
∂J(ω)

∂ωi

simultaneously for i = 0, . . . ,p }
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Logistic Regression: optimization of the cost function

▶ Recall that g(z) =
ez

1 + ez
=

1
1 + e−z

▶ Notice that g ′(z) = g(z)(1 − g(z))

▶
∂J(ω)

∂ωi

= (y− fω(x))xi

GD for logistic regression

▶ initialize ω randomly
▶ repeat until convergence{

ωnew
i = ωold

i − α
1
n

n∑
i=1

(
fω

(
x(i)

)
− y(i)

)
.x(i)i

simultaneously for i = 0, . . . ,p }
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Multi-class classification: One-vs-all

▶ Weather: Sunny, Cloudy, Rain, Snow
▶ Medical diagrams: Not ill, Cold, Flu
▶ News articles: Sport, Education,

Technology, Politics

x1

x
2

▶ f
(i)
ω (x) = P(y = 1|x,ω) for i = 1, 2, 3

▶ Train a logistic regression classifier for each
class i to predict the probability that y = i

▶ On a new input x, to make a prediction,
pick the class i that maximizes f

(i)
ω (x)

x1

x
2

x1

x
2

x1

x
2
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Logistic Regression: Remarks & summary

▶ Very famous method and maybe the most used
▶ Adapted for a binary y

▶ Relation with linear regression
▶ Linear decision boundary, but can be non linear using other hypothesis
▶ Direct calculation of p(y = 1 | x)
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Machine Learning

Lecture 2bis: Regularization
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Regression and Classification

• Supervised learning

• Target variable type

• Hypothesis

• Cost function

• Optimization

• Sampling
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The problem of overfitting
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Overfitting: Regression example
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Overfitting: Logistic Regression example
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Underfitting/Overfitting Trade off
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Adressing overfitting

• Options:

1. Reduce number of features

▫ Manually

▫ Model selection

2. Regularization

▫ Keep all the features, but reduce magnitude/values of parameters 𝜔𝑗

▫ Works well when we have a lot of features, each of which contributes a bit to predicting 𝑦

▫ It may not be immediately obvious why such a constraint should improve the fit, but it turns out that 
shrinking the coefficient estimates can significantly reduce their variance
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Regularization: Cost function
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𝐽(𝜔) =
1

2𝑛
σ𝑖=1

𝑛 𝑓𝜔 𝑥(𝑖) − 𝑦(𝑖) 2
 +



Choice of 𝜆

• 𝐽(𝜔) =
1

2𝑛
[σ𝑖=1

𝑛 𝑓𝜔 𝑥(𝑖) − 𝑦(𝑖) 2
+ 𝜆 σ𝑗=1

𝑝
𝑤𝑗

2]

• Choice of 𝜆

▫ What happens if 𝜆 is large ?
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Ridge Regression and Lasso

• Ridge Regression

• Lasso

• Neither ridge regression nor the lasso will universally dominate the other

• In general, one might expect the lasso to perform better when the response is a function of only a relatively small number of
predictors.

• However, the number of predictors that is related to the response is never known a priori for real data sets.

• A technique such as cross-validation can be used in order to determine which approach is better on a particular dataset.

• Cross-validation: we choose a grid of 𝜆 values, and compute the cross-validation error rate for each value of 𝜆. We then select the 
value for which the cross-validation error is smallest.
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𝐽(𝜔) =
1

2𝑛


𝑖=1

𝑛

𝑓𝜔 𝑥(𝑖) − 𝑦(𝑖) 2
+

𝐽(𝜔) =
1

2𝑛
σ𝑖=1

𝑛 𝑓𝜔 𝑥(𝑖) − 𝑦(𝑖) 2
 +



Regularization for Linear Regression
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Regularized Linear Regression: GD

• 𝐽(𝜔) =
1

2𝑛
[σ𝑖=1

𝑛 𝑓𝜔 𝑥(𝑖) − 𝑦(𝑖) 2
+ 𝜆 σ𝑗=1

𝑝
𝑤𝑗

2]

• min
𝜔

𝐽(𝜔)

• Using GD:

▫ initialize 𝜔𝑗 randomly

▫ repeat until convergence{

 𝜔0
𝑛𝑒𝑤 = 𝜔0

𝑜𝑙𝑑 − 𝛼
1

𝑛
σ𝑖=1

𝑛 𝑓𝜔 𝑥(𝑖) − 𝑦(𝑖)

 𝜔𝑗
𝑛𝑒𝑤 = 𝜔𝑗

𝑜𝑙𝑑 − 𝛼 
1

𝑛
σ𝑖=1

𝑛 𝑓𝜔 𝑥(𝑖) − 𝑦(𝑖) . 𝑥j
(𝑖)

                                 simultaneously for every 𝑗 = 1, … , 𝑝

}

• 𝜔𝑗
𝑛𝑒𝑤 = 𝜔𝑗

𝑜𝑙𝑑(1 − 𝛼
𝜆

𝑛
) − 𝛼

1

𝑛
σ𝑖=1

𝑛 𝑓𝜔 𝑥(𝑖) − 𝑦(𝑖) . 𝑥(𝑖)

• (1 − 𝛼
𝜆

𝑛
) will always be less than 1
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Regularized Linear Regression: OLS

• 𝐽(𝜔) =
1

2𝑛
[σ𝑖=1

𝑛 𝑓𝜔 𝑥(𝑖) − 𝑦(𝑖) 2
+ 𝜆 σ𝑗=1

𝑝
𝑤𝑗

2]

• min
𝜔

𝐽(𝜔)

• 𝜔 = (𝑋′𝑋 )−1𝑋′𝑦

• Using regularization takes care also of non-invertibility problem
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Regularization for Logistic Regression
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Regularized Logistic Regression
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• 𝐽(𝜔) = −
1

𝑛
σ𝑖=1

𝑛 𝑦(𝑖) log𝑓𝜔 𝑥(𝑖) + 1 − 𝑦(𝑖) log 1 − 𝑓𝜔 𝑥(𝑖)  +
𝜆

2𝑛
σ𝑗=1

𝑝
𝜔𝑗

2

• min
𝜔

𝐽(𝜔)

• Using GD:

▫ initialize 𝜔𝑗 randomly

▫ repeat until convergence{

 𝜔0
𝑛𝑒𝑤 = 𝜔0

𝑜𝑙𝑑 − 𝛼
1

𝑛
σ𝑖=1

𝑛 𝑓𝜔 𝑥(𝑖) − 𝑦(𝑖)

 𝜔𝑗
𝑛𝑒𝑤 = 𝜔𝑗

𝑜𝑙𝑑 − 𝛼[
1

𝑛
σ𝑖=1

𝑛 𝑓𝜔 𝑥(𝑖) − 𝑦(𝑖) . 𝑥(𝑖) +
𝜆

𝑛
𝜔𝑗] simultaneously for every 𝑗 = 1, … , 𝑝

}


