
Overview

In this chapter, we will see how neighborhood approaches to clustering work 
from start to end and implement the Density-Based Spatial Clustering 
of Applications with Noise (DBSCAN) algorithm from scratch by using 
packages. We will also identify the most suitable algorithm to solve your 
problem from k-means, hierarchical clustering, and DBSCAN. By the end of 
this chapter, we will see how the DBSCAN clustering approach will serve us 
best in the sphere of highly complex data.
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Introduction
ΖQ�SUHYLRXV�FKDSWHUV��ZH�HYDOXDWHG�D�QXPEHU�RI�GL΍HUHQW�DSSURDFKHV�WR�GDWD�
clustering, including k-means and hierarchical clustering. While k-means is the 
simplest form of clustering, it is still extremely powerful in the right scenarios. In 
situations where k-means can't capture the complexity of the dataset, hierarchical 
clustering proves to be a strong alternative.

One of the key challenges in unsupervised learning is that you will be presented with 
a collection of feature data but no complementary labels telling you what a target 
state will be. While you may not get a discrete view of what the target labels are, you 
can get some semblance of structure out of the data by clustering similar groups 
WRJHWKHU�DQG�VHHLQJ�ZKDW�LV�VLPLODU�ZLWKLQ�JURXSV��7KH�ȴUVW�DSSURDFK�ZH�FRYHUHG�
to achieve this goal of clustering similar data points is k-means. K-means clustering 
works best for simple data challenges where speed is paramount. Simply looking 
at the closest data point (cluster centroid) does not require a lot of computational 
overhead; however, there is also a greater challenge posed when it comes to higher-
dimensional datasets. K-means clustering is also not ideal if you are unaware of the 
potential number of clusters you are looking for. An example we worked with in 
Chapter 2, Hierarchical Clustering��HQWDLOHG�ORRNLQJ�DW�FKHPLFDO�SURȴOHV�WR�GHWHUPLQH�
which wines belonged together in a disorganized shipment. This exercise only  
worked well because we knew that three wine types were ordered; however,  
k-means would have been less successful if you had no idea regarding what the 
original order constituted.

The second clustering approach we explored was hierarchical clustering. This method 
can work in two ways – either agglomerative or divisive. Agglomerative clustering 
works with a bottom-up approach, treating each data point as its own cluster and 
recursively grouping them together with linkage criteria. Divisive clustering works 
in the opposite way by treating all data points as one large class and recursively 
EUHDNLQJ�WKHP�GRZQ�LQWR�VPDOOHU�FOXVWHUV��7KLV�DSSURDFK�KDV�WKH�EHQHȴW�RI�IXOO\�
understanding the entire data distribution, as it calculates splitting potential; 
however, it is typically not implemented in practice due to its greater complexity. 
Hierarchical clustering is a strong contender for your clustering needs when it comes 
to not knowing anything about the data. Using a dendrogram, you can visualize all the 
splits in your data and consider what number of clusters makes sense after the fact. 
7KLV�FDQ�EH�UHDOO\�KHOSIXO�LQ�\RXU�VSHFLȴF�XVH�FDVH��KRZHYHU��LW�DOVR�FRPHV�DW�D�KLJKHU�
computational cost than is associated with k-means. 
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In this chapter, we will cover a clustering approach that will serve us best in the 
sphere of highly complex data: Density-Based Spatial Clustering of Applications 
with Noise (DBSCAN). Canonically, this method has always been seen as a high 
performer in datasets that have a lot of densely interspersed data. Let's walk through 
why it does so well in these use cases.

Clusters as Neighborhoods
Until now, we have explored the concept of likeness being described as a function 
of Euclidean distance – data points that are closer to any one point can be seen 
as similar, while those that are further away in Euclidean space can be seen as 
dissimilar. This notion is seen once again in the DBSCAN algorithm. As alluded to 
by the lengthy name, the DBSCAN approach expands upon basic distance metric 
evaluation by also incorporating the notion of density. If there are clumps of data 
points that all exist in the same area as one another, they can be seen as members of 
the same cluster:

Figure 3.1: Neighbors have a direct connection to clusters
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ΖQ�WKH�SUHFHGLQJ�ȴJXUH��ZH�FDQ�VHH�IRXU�QHLJKERUKRRGV��7KH�GHQVLW\�EDVHG�DSSURDFK�
KDV�D�QXPEHU�RI�EHQHȴWV�ZKHQ�FRPSDUHG�WR�WKH�SDVW�DSSURDFKHV�ZH
YH�FRYHUHG�WKDW�
focus exclusively on distance. If you were just focusing on distance as a clustering 
WKUHVKROG��WKHQ�\RX�PD\�ȴQG�\RXU�FOXVWHULQJ�PDNHV�OLWWOH�VHQVH�LI�IDFHG�ZLWK�D�
sparse feature space with outliers. Both k-means and hierarchical clustering will 
automatically group together all data points in the space until no points are left.

While hierarchical clustering does provide a path around this issue somewhat, since 
you can dictate where clusters are formed using a dendrogram post-clustering run, 
k-means is the most susceptible to failure as it is the simplest approach to clustering. 
These pitfalls are less evident when we begin evaluating neighborhood approaches to 
clustering. In the following dendrogram, you can see an example of the pitfall where 
all data points are grouped together. Clearly, as you travel down the dendrogram, 
there is a lot of potential variation that gets grouped together since every  
point needs to be a member of a cluster. This is less of an issue with  
neighborhood-based clustering:

Figure 3.2: Example dendrogram
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By incorporating the notion of neighbor density in DBSCAN, we can leave outliers out 
of clusters if we choose to, based on the hyperparameters we choose at runtime. 
Only the data points that have close neighbors will be seen as members within the 
same cluster, and those that are farther away can be left as unclustered outliers.

Introduction to DBSCAN
In DBSCAN, density is evaluated as a combination of neighborhood radius and 
minimum points found in a neighborhood deemed a cluster. This concept can be 
driven home if we reconsider the scenario where you are tasked with organizing 
an unlabeled shipment of wine for your store. In the previous example, it was 
PDGH�FOHDU�WKDW�ZH�FDQ�ȴQG�VLPLODU�ZLQHV�EDVHG�RQ�WKHLU�IHDWXUHV��VXFK�DV�FKHPLFDO�
traits. Knowing this information, we can more easily group together similar wines 
DQG�HɝFLHQWO\�KDYH�RXU�SURGXFWV�RUJDQL]HG�IRU�VDOH�LQ�QR�WLPH��ΖQ�WKH�UHDO�ZRUOG��
KRZHYHU��WKH�SURGXFWV�WKDW�\RX�RUGHU�WR�VWRFN�\RXU�VWRUH�ZLOO�UHȵHFW�UHDO�ZRUOG�
SXUFKDVH�SDWWHUQV��7R�SURPRWH�YDULHW\�LQ�\RXU�LQYHQWRU\��EXW�VWLOO�KDYH�VXɝFLHQW�
stock of the most popular wines, there is a highly uneven distribution of product 
types that you have available. Most people love the classic wines, such as white and 
red; however, you may still carry more exotic wines for your customers who love 
H[SHQVLYH�YDULHWLHV��7KLV�PDNHV�FOXVWHULQJ�PRUH�GLɝFXOW��VLQFH�WKHUH�DUH�XQHYHQ�FODVV�
distributions (you don't order 10 bottles of every wine available, for example).

'%6&$1�GL΍HUV�IURP�N�PHDQV�DQG�KLHUDUFKLFDO�FOXVWHULQJ�EHFDXVH�\RX�FDQ�EXLOG�WKLV�
intuition into how we evaluate the clusters of customers we are interested in forming. 
It can cut through the noise in an easier fashion and only point out customers who 
have the highest potential for remarketing in a campaign.

By clustering through the concept of a neighborhood, we can separate out the 
RQH�R΍�FXVWRPHUV�ZKR�FDQ�EH�VHHQ�DV�UDQGRP�QRLVH��UHODWLYH�WR�WKH�PRUH�YDOXDEOH�
customers who come back to our store time and time again. This approach calls into 
question how we establish the best numbers when it comes to neighborhood radius 
and minimum points per neighborhood.

As a high-level heuristic, we want our neighborhood radius to be small, but not too 
small. At one end of the extreme, you can have the neighborhood radius quite high 
– this can max out at treating all points in the feature space as one massive cluster. 
At the opposite end of the extreme, you can have a very small neighborhood radius. 
Overly small neighborhood radii can result in no points being clustered together and 
having a large collection of single-member clusters.
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Similar logic applies when it comes to the minimum number of points that can make 
up a cluster. Minimum points can be seen as a secondary threshold that tunes 
the neighborhood radius a bit, depending on what data you have available in your 
space. If all of the data in your feature space is extremely sparse, minimum points 
become extremely valuable, in tandem with the neighborhood radius, to make sure 
you don't just have a large number of uncorrelated data points. When you have very 
dense data, the minimum points threshold becomes less of a driving factor than 
neighborhood radius.

As you can see from these two hyperparameter rules, the best options are, as  
usual, dependent on what your dataset looks like. Oftentimes, you will want to  
ȴQG�WKH�SHUIHFW��JROGLORFNV��]RQH�RI�QRW�EHLQJ�WRR�VPDOO�LQ�\RXU�K\SHUSDUDPHWHUV�� 
but also not too large.

DBSCAN in Detail

To see how DBSCAN works, we can trace the path of a simple toy program as it 
merges together to form a variety of clusters and noise-labeled data points:

1. Out of n�XQYLVLWHG�VDPSOH�GDWD�SRLQWV��ZH
OO�ȴUVW�PRYH�WKURXJK�HDFK�SRLQW�LQ�D�
loop and mark each one as visited.

2. From each point, we'll look at the distance to every other point in the dataset.

3. All points that fall within the neighborhood radius hyperparameter should be 
considered as neighbors.

4. The number of neighbors should be at least as many as the minimum  
points required.

5. If the minimum point threshold is reached, the points should be grouped 
together as a cluster, or else marked as noise.

6. This process should be repeated until all data points are categorized in clusters 
or as noise.

DBSCAN is fairly straightforward in some senses – while there are the new concepts 
of density through neighborhood radius and minimum points, at its core, it is still just 
evaluating using a distance metric. 
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Walkthrough of the DBSCAN Algorithm

The following steps will walk you through this path in slightly more detail:

1. Given six sample data points, view each point as its own cluster [ (1,3) ], [ (-8,6) ], [ 
(-6,4) ] , [ (4,-2) ], ] (2,5) ], [ (-2,0) ]:

Figure 3.3: Plot of sample data points

2. Calculate the pairwise Euclidean distance between each of the points:

Figure 3.4: Point distances
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3. From each point, expand a neighborhood size outward and form clusters. For 
the purpose of this example, imagine you pass through a neighborhood radius 
RI�ȴYH��7KLV�PHDQV�WKDW�DQ\�WZR�SRLQWV�ZLOO�EH�QHLJKERUV�LI�WKH�GLVWDQFH�EHWZHHQ�
WKHP�LV�OHVV�WKDQ�ȴYH�XQLWV��)RU�H[DPSOH��SRLQW�������KDV�SRLQWV�������DQG�������� 
as neighbors.

Depending on the number of points in the neighborhood of a given point, the 
SRLQW�FDQ�EH�FODVVLȴHG�LQWR�WKH�IROORZLQJ�WKUHH�FDWHJRULHV�

Core Point: If the point under observation has data points greater than the 
minimum number of points in its neighborhood that make up a cluster, then that 
point is called a core point of the cluster. All core points within the neighborhood 
of other core points are part of the same cluster. However, all the core points 
that are not in same neighborhood are part of another cluster.

Boundary Point��ΖI�WKH�SRLQW�XQGHU�REVHUYDWLRQ�GRHV�QRW�KDYH�VXɝFLHQW�
neighbors (data points) of its own, but it has at least one core point (in its 
neighborhood), then that point represents the boundary point of the cluster. 
Boundary points belong to the same cluster of their nearest core point. 

Noise Point: A data point is treated as a noise point if it does not have the 
required minimum number of data points in its neighborhood and is not 
associated with a core point. This point is treated as pure noise and is excluded 
from clustering.

4. Points that have neighbors are then evaluated to see whether they pass 
the minimum points threshold. In this example, if we had passed through 
a minimum points threshold of two, then points (1,3), (2,5), and (-2,0) could 
formally be grouped together as a cluster. If we had a minimum points threshold 
RI�IRXU��WKHQ�WKHVH�WKUHH�GDWD�SRLQWV�ZRXOG�EH�FRQVLGHUHG�VXSHUȵXRXV�QRLVH�

5. Points that have fewer neighbors than the minimum number of neighboring 
points required and whose neighborhood does not contain a core point are 
marked as noise and remain unclustered. Thus, points (-6,4), (4,-2), and (-8,6) fall 
under this category. However, points such as (2,5) and (2,0), though don't satisfy 
the criteria of the minimum number of points in neighborhood, do contain a 
core point as their neighbor, and are therefore marked as boundary points. 
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6. 7KH�IROORZLQJ�WDEOH�VXPPDUL]HV�WKH�QHLJKERUV�RI�D�SDUWLFXODU�SRLQW�DQG�FODVVLȴHV�
them as core, boundary, and noise data points (mentioned in the preceding step) 
for a neighborhood radius of 5 and a minimum-neighbor criterion of 2.

Figure 3.5: Table showing details of neighbors for given points

7. Repeat this process on any remaining unvisited data points.

At the end of this process, you will have sorted your entire dataset into either clusters 
or unrelated noise. DBSCAN performance is highly dependent on the threshold 
hyperparameters you choose. This means that you may have to run DBSCAN a couple 
RI�WLPHV�ZLWK�GL΍HUHQW�K\SHUSDUDPHWHU�RSWLRQV�WR�JHW�DQ�XQGHUVWDQGLQJ�RI�KRZ�WKH\�
LQȵXHQFH�RYHUDOO�SHUIRUPDQFH�

Note that DBSCAN does not require the centroids that we saw in both k-means 
and centroid-focused implementation of hierarchical clustering. This feature allows 
DBSCAN to work better for complex datasets, since most data is not shaped like clean 
EOREV��'%6&$1�LV�DOVR�PRUH�H΍HFWLYH�DJDLQVW�RXWOLHUV�DQG�QRLVH�WKDQ�N�PHDQV�RU�
hierarchical clustering.

Let's now see how the performance of DBSCAN changes with varying neighborhood 
radius sizes.


