
Overview

In this chapter, we will see how neighborhood approaches to clustering work
from start to end and implement the Density-Based Spatial Clustering
of Applications with Noise (DBSCAN) algorithm from scratch by using
packages. We will also identify the most suitable algorithm to solve your
problem from k-means, hierarchical clustering, and DBSCAN. By the end of
this chapter, we will see how the DBSCAN clustering approach will serve us
best in the sphere of highly complex data.

Neighborhood Approaches

and DBSCAN

3

72 | Neighborhood Approaches and DBSCAN

Introduction
ΖQ�SUHYLRXV�FKDSWHUV��ZH�HYDOXDWHG�D�QXPEHU�RI�GL΍HUHQW�DSSURDFKHV�WR�GDWD�
clustering, including k-means and hierarchical clustering. While k-means is the
simplest form of clustering, it is still extremely powerful in the right scenarios. In
situations where k-means can't capture the complexity of the dataset, hierarchical
clustering proves to be a strong alternative.

One of the key challenges in unsupervised learning is that you will be presented with
a collection of feature data but no complementary labels telling you what a target
state will be. While you may not get a discrete view of what the target labels are, you
can get some semblance of structure out of the data by clustering similar groups
WRJHWKHU�DQG�VHHLQJ�ZKDW�LV�VLPLODU�ZLWKLQ�JURXSV��7KH�ȴUVW�DSSURDFK�ZH�FRYHUHG�
to achieve this goal of clustering similar data points is k-means. K-means clustering
works best for simple data challenges where speed is paramount. Simply looking
at the closest data point (cluster centroid) does not require a lot of computational
overhead; however, there is also a greater challenge posed when it comes to higher-
dimensional datasets. K-means clustering is also not ideal if you are unaware of the
potential number of clusters you are looking for. An example we worked with in
Chapter 2, Hierarchical Clustering��HQWDLOHG�ORRNLQJ�DW�FKHPLFDO�SURȴOHV�WR�GHWHUPLQH�
which wines belonged together in a disorganized shipment. This exercise only
worked well because we knew that three wine types were ordered; however,
k-means would have been less successful if you had no idea regarding what the
original order constituted.

The second clustering approach we explored was hierarchical clustering. This method
can work in two ways – either agglomerative or divisive. Agglomerative clustering
works with a bottom-up approach, treating each data point as its own cluster and
recursively grouping them together with linkage criteria. Divisive clustering works
in the opposite way by treating all data points as one large class and recursively
EUHDNLQJ�WKHP�GRZQ�LQWR�VPDOOHU�FOXVWHUV��7KLV�DSSURDFK�KDV�WKH�EHQHȴW�RI�IXOO\�
understanding the entire data distribution, as it calculates splitting potential;
however, it is typically not implemented in practice due to its greater complexity.
Hierarchical clustering is a strong contender for your clustering needs when it comes
to not knowing anything about the data. Using a dendrogram, you can visualize all the
splits in your data and consider what number of clusters makes sense after the fact.
7KLV�FDQ�EH�UHDOO\�KHOSIXO�LQ�\RXU�VSHFLȴF�XVH�FDVH��KRZHYHU��LW�DOVR�FRPHV�DW�D�KLJKHU�
computational cost than is associated with k-means.

Clusters as Neighborhoods | 73

In this chapter, we will cover a clustering approach that will serve us best in the
sphere of highly complex data: Density-Based Spatial Clustering of Applications
with Noise (DBSCAN). Canonically, this method has always been seen as a high
performer in datasets that have a lot of densely interspersed data. Let's walk through
why it does so well in these use cases.

Clusters as Neighborhoods
Until now, we have explored the concept of likeness being described as a function
of Euclidean distance – data points that are closer to any one point can be seen
as similar, while those that are further away in Euclidean space can be seen as
dissimilar. This notion is seen once again in the DBSCAN algorithm. As alluded to
by the lengthy name, the DBSCAN approach expands upon basic distance metric
evaluation by also incorporating the notion of density. If there are clumps of data
points that all exist in the same area as one another, they can be seen as members of
the same cluster:

Figure 3.1: Neighbors have a direct connection to clusters

74 | Neighborhood Approaches and DBSCAN

ΖQ�WKH�SUHFHGLQJ�ȴJXUH��ZH�FDQ�VHH�IRXU�QHLJKERUKRRGV��7KH�GHQVLW\�EDVHG�DSSURDFK�
KDV�D�QXPEHU�RI�EHQHȴWV�ZKHQ�FRPSDUHG�WR�WKH�SDVW�DSSURDFKHV�ZH
YH�FRYHUHG�WKDW�
focus exclusively on distance. If you were just focusing on distance as a clustering
WKUHVKROG��WKHQ�\RX�PD\�ȴQG�\RXU�FOXVWHULQJ�PDNHV�OLWWOH�VHQVH�LI�IDFHG�ZLWK�D�
sparse feature space with outliers. Both k-means and hierarchical clustering will
automatically group together all data points in the space until no points are left.

While hierarchical clustering does provide a path around this issue somewhat, since
you can dictate where clusters are formed using a dendrogram post-clustering run,
k-means is the most susceptible to failure as it is the simplest approach to clustering.
These pitfalls are less evident when we begin evaluating neighborhood approaches to
clustering. In the following dendrogram, you can see an example of the pitfall where
all data points are grouped together. Clearly, as you travel down the dendrogram,
there is a lot of potential variation that gets grouped together since every
point needs to be a member of a cluster. This is less of an issue with
neighborhood-based clustering:

Figure 3.2: Example dendrogram

Introduction to DBSCAN | 75

By incorporating the notion of neighbor density in DBSCAN, we can leave outliers out
of clusters if we choose to, based on the hyperparameters we choose at runtime.
Only the data points that have close neighbors will be seen as members within the
same cluster, and those that are farther away can be left as unclustered outliers.

Introduction to DBSCAN
In DBSCAN, density is evaluated as a combination of neighborhood radius and
minimum points found in a neighborhood deemed a cluster. This concept can be
driven home if we reconsider the scenario where you are tasked with organizing
an unlabeled shipment of wine for your store. In the previous example, it was
PDGH�FOHDU�WKDW�ZH�FDQ�ȴQG�VLPLODU�ZLQHV�EDVHG�RQ�WKHLU�IHDWXUHV��VXFK�DV�FKHPLFDO�
traits. Knowing this information, we can more easily group together similar wines
DQG�HɝFLHQWO\�KDYH�RXU�SURGXFWV�RUJDQL]HG�IRU�VDOH�LQ�QR�WLPH��ΖQ�WKH�UHDO�ZRUOG��
KRZHYHU��WKH�SURGXFWV�WKDW�\RX�RUGHU�WR�VWRFN�\RXU�VWRUH�ZLOO�UHȵHFW�UHDO�ZRUOG�
SXUFKDVH�SDWWHUQV��7R�SURPRWH�YDULHW\�LQ�\RXU�LQYHQWRU\��EXW�VWLOO�KDYH�VXɝFLHQW�
stock of the most popular wines, there is a highly uneven distribution of product
types that you have available. Most people love the classic wines, such as white and
red; however, you may still carry more exotic wines for your customers who love
H[SHQVLYH�YDULHWLHV��7KLV�PDNHV�FOXVWHULQJ�PRUH�GLɝFXOW��VLQFH�WKHUH�DUH�XQHYHQ�FODVV�
distributions (you don't order 10 bottles of every wine available, for example).

'%6&$1�GL΍HUV�IURP�N�PHDQV�DQG�KLHUDUFKLFDO�FOXVWHULQJ�EHFDXVH�\RX�FDQ�EXLOG�WKLV�
intuition into how we evaluate the clusters of customers we are interested in forming.
It can cut through the noise in an easier fashion and only point out customers who
have the highest potential for remarketing in a campaign.

By clustering through the concept of a neighborhood, we can separate out the
RQH�R΍�FXVWRPHUV�ZKR�FDQ�EH�VHHQ�DV�UDQGRP�QRLVH��UHODWLYH�WR�WKH�PRUH�YDOXDEOH�
customers who come back to our store time and time again. This approach calls into
question how we establish the best numbers when it comes to neighborhood radius
and minimum points per neighborhood.

As a high-level heuristic, we want our neighborhood radius to be small, but not too
small. At one end of the extreme, you can have the neighborhood radius quite high
– this can max out at treating all points in the feature space as one massive cluster.
At the opposite end of the extreme, you can have a very small neighborhood radius.
Overly small neighborhood radii can result in no points being clustered together and
having a large collection of single-member clusters.

76 | Neighborhood Approaches and DBSCAN

Similar logic applies when it comes to the minimum number of points that can make
up a cluster. Minimum points can be seen as a secondary threshold that tunes
the neighborhood radius a bit, depending on what data you have available in your
space. If all of the data in your feature space is extremely sparse, minimum points
become extremely valuable, in tandem with the neighborhood radius, to make sure
you don't just have a large number of uncorrelated data points. When you have very
dense data, the minimum points threshold becomes less of a driving factor than
neighborhood radius.

As you can see from these two hyperparameter rules, the best options are, as
usual, dependent on what your dataset looks like. Oftentimes, you will want to
ȴQG�WKH�SHUIHFW��JROGLORFNV��]RQH�RI�QRW�EHLQJ�WRR�VPDOO�LQ�\RXU�K\SHUSDUDPHWHUV��
but also not too large.

DBSCAN in Detail

To see how DBSCAN works, we can trace the path of a simple toy program as it
merges together to form a variety of clusters and noise-labeled data points:

1. Out of n�XQYLVLWHG�VDPSOH�GDWD�SRLQWV��ZH
OO�ȴUVW�PRYH�WKURXJK�HDFK�SRLQW�LQ�D�
loop and mark each one as visited.

2. From each point, we'll look at the distance to every other point in the dataset.

3. All points that fall within the neighborhood radius hyperparameter should be
considered as neighbors.

4. The number of neighbors should be at least as many as the minimum
points required.

5. If the minimum point threshold is reached, the points should be grouped
together as a cluster, or else marked as noise.

6. This process should be repeated until all data points are categorized in clusters
or as noise.

DBSCAN is fairly straightforward in some senses – while there are the new concepts
of density through neighborhood radius and minimum points, at its core, it is still just
evaluating using a distance metric.

Introduction to DBSCAN | 77

Walkthrough of the DBSCAN Algorithm

The following steps will walk you through this path in slightly more detail:

1. Given six sample data points, view each point as its own cluster [(1,3)], [(-8,6)], [
(-6,4)] , [(4,-2)],] (2,5)], [(-2,0)]:

Figure 3.3: Plot of sample data points

2. Calculate the pairwise Euclidean distance between each of the points:

Figure 3.4: Point distances

78 | Neighborhood Approaches and DBSCAN

3. From each point, expand a neighborhood size outward and form clusters. For
the purpose of this example, imagine you pass through a neighborhood radius
RI�ȴYH��7KLV�PHDQV�WKDW�DQ\�WZR�SRLQWV�ZLOO�EH�QHLJKERUV�LI�WKH�GLVWDQFH�EHWZHHQ�
WKHP�LV�OHVV�WKDQ�ȴYH�XQLWV��)RU�H[DPSOH��SRLQW�������KDV�SRLQWV�������DQG��������
as neighbors.

Depending on the number of points in the neighborhood of a given point, the
SRLQW�FDQ�EH�FODVVLȴHG�LQWR�WKH�IROORZLQJ�WKUHH�FDWHJRULHV�

Core Point: If the point under observation has data points greater than the
minimum number of points in its neighborhood that make up a cluster, then that
point is called a core point of the cluster. All core points within the neighborhood
of other core points are part of the same cluster. However, all the core points
that are not in same neighborhood are part of another cluster.

Boundary Point��ΖI�WKH�SRLQW�XQGHU�REVHUYDWLRQ�GRHV�QRW�KDYH�VXɝFLHQW�
neighbors (data points) of its own, but it has at least one core point (in its
neighborhood), then that point represents the boundary point of the cluster.
Boundary points belong to the same cluster of their nearest core point.

Noise Point: A data point is treated as a noise point if it does not have the
required minimum number of data points in its neighborhood and is not
associated with a core point. This point is treated as pure noise and is excluded
from clustering.

4. Points that have neighbors are then evaluated to see whether they pass
the minimum points threshold. In this example, if we had passed through
a minimum points threshold of two, then points (1,3), (2,5), and (-2,0) could
formally be grouped together as a cluster. If we had a minimum points threshold
RI�IRXU��WKHQ�WKHVH�WKUHH�GDWD�SRLQWV�ZRXOG�EH�FRQVLGHUHG�VXSHUȵXRXV�QRLVH�

5. Points that have fewer neighbors than the minimum number of neighboring
points required and whose neighborhood does not contain a core point are
marked as noise and remain unclustered. Thus, points (-6,4), (4,-2), and (-8,6) fall
under this category. However, points such as (2,5) and (2,0), though don't satisfy
the criteria of the minimum number of points in neighborhood, do contain a
core point as their neighbor, and are therefore marked as boundary points.

Introduction to DBSCAN | 79

6. 7KH�IROORZLQJ�WDEOH�VXPPDUL]HV�WKH�QHLJKERUV�RI�D�SDUWLFXODU�SRLQW�DQG�FODVVLȴHV�
them as core, boundary, and noise data points (mentioned in the preceding step)
for a neighborhood radius of 5 and a minimum-neighbor criterion of 2.

Figure 3.5: Table showing details of neighbors for given points

7. Repeat this process on any remaining unvisited data points.

At the end of this process, you will have sorted your entire dataset into either clusters
or unrelated noise. DBSCAN performance is highly dependent on the threshold
hyperparameters you choose. This means that you may have to run DBSCAN a couple
RI�WLPHV�ZLWK�GL΍HUHQW�K\SHUSDUDPHWHU�RSWLRQV�WR�JHW�DQ�XQGHUVWDQGLQJ�RI�KRZ�WKH\�
LQȵXHQFH�RYHUDOO�SHUIRUPDQFH�

Note that DBSCAN does not require the centroids that we saw in both k-means
and centroid-focused implementation of hierarchical clustering. This feature allows
DBSCAN to work better for complex datasets, since most data is not shaped like clean
EOREV��'%6&$1�LV�DOVR�PRUH�H΍HFWLYH�DJDLQVW�RXWOLHUV�DQG�QRLVH�WKDQ�N�PHDQV�RU�
hierarchical clustering.

Let's now see how the performance of DBSCAN changes with varying neighborhood
radius sizes.

