
Advanced Machine Learning
Course 2 - (Hierarchical) Clustering

L. Omar Chehab(1) and Frédéric Pascal(2)

(1) Parietal Team, Inria (2) Laboratory of Signals and Systems (L2S), CentraleSupélec,
University Paris-Saclay

frederic.pascal@centralesupelec.fr, l-emir-omar.chehab@inria.fr

http://fredericpascal.blogspot.fr

Dominante MDS (Mathématiques, Data Sciences)
Sept. - Nov., 2021

http://fredericpascal.blogspot.fr

Contents

1 Introduction - Reminders of probability theory and mathematical
statistics (Bayes, estimation, tests) - FP

2 (Hierarchical) clustering - FP / OC
3 Robust regression approaches - EC / OC
4 Mixture models fitting / Model Order Selection - FP / OC
5 Stochastic approximation algorithms - EC / OC
6 Nonnegative matrix factorization (NMF) - EC / OC
7 Inference on graphical models - EC / OC
8 Exam

Key references for this course

Tan, P. N., Steinbach, M., Kumar V., Data mining cluster analysis:
basic concepts and algorithms. Introduction to data mining. 2013.

Bishop, C. M. Pattern Recognition and Machine Learning. Springer,
2006.

Hastie, T., Tibshirani, R. and Friedman, J. The Elements of Statistical
Learning: Data Mining, Inference, and Prediction. Second edition.
Springer, 2009.

James, G., Witten, D., Hastie, T. and Tibshirani, R. An Introduction
to Statistical Learning, with Applications in R. Springer, 2013

F. Pascal 3 / 78

Course 2

Classification and (hierarchical) Clustering

F. Pascal 4 / 78

Regression vs Classification

Regression

y ∈R is a continuous variable

Predict a numerical value

Classification

labels are discrete variables

Binary Classification y ∈ {0,1},
y ∈ {−1,1}, ...

Multiclass y ∈ {1, ...,K }

F. Pascal 5 / 78

Regression Applications

Financial data

x: economical, social, political variables
y: stock price

Weather prediction

x: location, ...
y: temperature value

F. Pascal 6 / 78

Today’s Lecture

I. Classification
Reminders on linear SVMs
SVM - Handling non-linear boundaries: Kernel Machines

II. Introduction to clustering
III. Reminders on Clustering

Types of methods and clusters
Distance and Dissimilarity
Clustering Quality

IV. Clustering algorithms
K-means
Hierarchical clustering
DBSCAN
HDBSCAN

Today’s Lecture

I. Classification
Reminders on linear SVMs
SVM - Handling non-linear boundaries: Kernel Machines

II. Introduction to clustering
III. Reminders on Clustering

Types of methods and clusters
Distance and Dissimilarity
Clustering Quality

IV. Clustering algorithms
K-means
Hierarchical clustering
DBSCAN
HDBSCAN

Linear SVM: Problem Formulation

Training set of pairs (xi,yi), i = 1, ..,n

xi ∈Rd and y ∈ {−1,1}

Objective

Find a linear function f (x) = wT x+b, w ∈Rd,b ∈R that classifies input
samples such that

f (x) > 0 x is assigned to class 1
f (x) < 0 x is assigned to class -1

Classification rule is sign(f (x))

Classification Reminders on linear SVMs F. Pascal 7 / 78

Linear SVM: Problem Formulation

Training set of pairs (xi,yi), i = 1, ..,n

xi ∈Rd and y ∈ {−1,1}

Objective

Find a linear function f (x) = wT x+b, w ∈Rd,b ∈R that classifies input
samples such that

f (x) > 0 x is assigned to class 1
f (x) < 0 x is assigned to class -1

Classification rule is sign(f (x))

Classification Reminders on linear SVMs F. Pascal 7 / 78

Max Margin Classifier

Best classifier?
Decision boundary that is more “stable”, we are confident in all decisions

We want observations to be as far from the decision boundary as possible

 large margin

Classification Reminders on linear SVMs F. Pascal 8 / 78

Max Margin Classifier

The margin is the smallest distance d(H ,x) between the boundary (H) and
any of the observations

d(xi,H) = yi(wT xi +b)

‖w‖ = |f (xi)|
‖w‖

Classification Reminders on linear SVMs F. Pascal 9 / 78

Max Margin Classifier: Canonical Hyperplane
Constraints for the hyperplane: one forces the training samples that are the
closest to the boundary to satisfy

yi(wT xi +b) = 1 =⇒ min
xi

|wT x+b| = 1

The xi satisfying yi(wT xi +b) = 1 are the support vectors

The geometrical margin M = 2
‖w‖

Classification Reminders on linear SVMs F. Pascal 10 / 78

Linear SVM: Optimization Problem

Goal: Maximize the margin while correctly classifying each sample
constrained optimization problem

Primal problem

min
w,b

1

2
‖w‖2 s.t yi(wT xi +b) ≥ 1, ∀i = 1, ...,n

Simple problem since the cost function to optimize is quadratic and the
constraints are linear!

Classification Reminders on linear SVMs F. Pascal 11 / 78

Linear SVM: Dual problem
Lagrangian formulation

L(w,α) = 1

2
‖w‖2 −

n∑
i=1

αi[yi(wT xi +b)−1]

αi are the Lagrange multipliers, dual variables

Set derivatives wrt w and b to zero

n∑
i=1

αiyi = 0 and w =
n∑

i=1
αiyixi

Substitute the latter in L

Maximization problem
max
α

∑n
i=1αi −∑n

i=1αiαjyiyjxT
i xj s.t αi ≥ 0,∀i and

∑n
i=1αiyi = 0

Classification Reminders on linear SVMs F. Pascal 12 / 78

Linear SVM: solution
Once we have the dual problem...

1 Find the solution α̂ (quadratic function to optimize and linear
constraints)

2 Compute the weights according to ŵ =∑n
i=1 α̂iyixi

3 Two scenarios {
xi is on the margin →αi > 0

yi(wT xi +b) > 1 and αi = 0

Only the support vectors play a role in prediction !!!
4 Compute b knowing that α̂i > 0 satisfy yi(ŵT xi +b) = 1

Classification function:

f (x) = ŵT x+b =
n∑

i=1
α̂iyix

T
i x+b

Classification Reminders on linear SVMs F. Pascal 13 / 78

Linear SVMs: summary

In the primal problem
Predictions are based on the learnt (n+1) values of w and b

Parametric approach

In the dual formulation...
Only the support vectors play a role in prediction
Central in practice because once the model is trained, a significant
proportion of datapoints can be discarded

Classification Reminders on linear SVMs F. Pascal 14 / 78

Soft SVM: The overlapping case
Key principle: If the classes are overlapping, we can’t learn a perfect linear
classifier

Allow for some error or slack : ξi ≥ 0

The slack relaxes the classification constraint

yi(wT xi +b) ≥ 1−ξi

Minimize the sum of slacks
∑n

i=1 ξi

Classification Reminders on linear SVMs F. Pascal 15 / 78

Soft SVM: Optimization problem

New optimization problem

min
w,b

1

2
‖w‖2 +C

n∑
i=1

ξi s.t yi(wT xi +b) ≥ 1−ξi, ξi ≥ 0 ∀i

C controls the trade-off between slack errors and margin maximization
→ user defined

Dual problem (after similar computations...)

max
α

∑n
i=1αi −∑n

i=1αiαjyiyjxT
i xj

s.t 0 ≤αi ≤ C,∀i and
∑n

i=1αiyi = 0

Classification Reminders on linear SVMs F. Pascal 16 / 78

Soft SVM : Examples

Influence of C
Larger C values penalize the slack more narrow margin

Classification Reminders on linear SVMs F. Pascal 17 / 78

Today’s Lecture

I. Classification
Reminders on linear SVMs
SVM - Handling non-linear boundaries: Kernel Machines

II. Introduction to clustering
III. Reminders on Clustering

Types of methods and clusters
Distance and Dissimilarity
Clustering Quality

IV. Clustering algorithms
K-means
Hierarchical clustering
DBSCAN
HDBSCAN

Non-linear Boundaries

Linear SVM limitations
The decision boundary is not always linear
Data are not always vectors (e.g., string, time series, graphs, images
...)

Classification
SVM - Handling non-linear boundaries:

Kernel Machines F. Pascal 18 / 78

Higher Dimensional Embedding
Key Idea: Data might be linearly separable in a higher dimensional space

Use a non-linear embedding Φ(x) :Rp 7→Rq

Train the SVM using pairs (Φ(xi),yi)

(Non-linear transformation linear separabilty)

Classification
SVM - Handling non-linear boundaries:

Kernel Machines F. Pascal 19 / 78

Example

Consider the binary case
The classes C1 = {(1,1), (−1,−1)} and C2 = {(1,−1), (−1,1)} are not linearly
separable. Consider the application Φ defined by

Φ :

{
R2 7→R6

(x1,x2) 7→ (
p

2x1,
p

2x1x2,1,
p

2x2,x2
1,x2

2)

The data are separable in the plane (Φ1,Φ2)

Classification
SVM - Handling non-linear boundaries:

Kernel Machines F. Pascal 20 / 78

Non-linear SVM: Kernels

The decision function is now

f (x) = wTΦ(x)+b =∑
SV
αiyiΦ(xi)

TΦ(x)

The kernel trick
Exploit the inner product in the dual formulation of SVM
Define a function k(. , .) :χ×χ 7→R (similarity in implicit higher
dimensional space)
Replace the inner product between samples by the kernel k

Independent of the implicit feature dimension!
 reduce computational cost from O(n3),O(n2) to O(n) using
k(x,y) =Φ(x)TΦ(y)

Classification
SVM - Handling non-linear boundaries:

Kernel Machines F. Pascal 21 / 78

Non-linear SVMs: Kernels

A kernel k is a function k(. , .) :χ×χ 7→R such that

k(x,y) = 〈Φ(x),Φ(y)〉

What are the conditions on k?
The kernel must be positive-definite to ensure a well-defined dual problem

1 Symmetric k(x,y) = k(y,x)

2 And for any positive integer n

∀αi
∑

i

∑
j
αn

i α
n
j k(xi,xj) ≥ 0

The associated Gram matrix G ∈Rn×n Gij = k(xi,xj) is positive definite

Classification
SVM - Handling non-linear boundaries:

Kernel Machines F. Pascal 22 / 78

Common Kernels

How to choose the right kernel?
Short answer: test it !

Use cross-validation for the hyperparameters (polynomial order p,
bandwidth σ)

Classification
SVM - Handling non-linear boundaries:

Kernel Machines F. Pascal 23 / 78

Non Linear SVM: kernel formulation

With similar computations of the Lagrangian we obtain...

Dual problem
max
α

∑n
i=1αi −∑n

i=1αiαjyiyjk(xi,xj)

s.t 0 ≤αi ≤ C,∀i and
∑n

i=1αiyi = 0

Classification function
f (x) =∑

SV
αiyik(xi,x)

Classification
SVM - Handling non-linear boundaries:

Kernel Machines F. Pascal 24 / 78

Non-linear SVM: Example

Classification
SVM - Handling non-linear boundaries:

Kernel Machines F. Pascal 25 / 78

Example with Gaussian Kernel

Classification
SVM - Handling non-linear boundaries:

Kernel Machines F. Pascal 26 / 78

Non Linear SVM: Summary

Exploit inner product in dual formulation

No explicit representation of the non-linear embedding Φ

Can be defined on any kind of data provided we are able to define a measure
of similarity

Need to save the support vectors : instance based approach (save data
rather than parameters)

In practice: no right way to choose the kernel, cross-validation for the
hyperparameters

In practice: small to moderate datasets

Classification
SVM - Handling non-linear boundaries:

Kernel Machines F. Pascal 27 / 78

Today’s Lecture

I. Classification
Reminders on linear SVMs
SVM - Handling non-linear boundaries: Kernel Machines

II. Introduction to clustering
III. Reminders on Clustering

Types of methods and clusters
Distance and Dissimilarity
Clustering Quality

IV. Clustering algorithms
K-means
Hierarchical clustering
DBSCAN
HDBSCAN

Clustering: An Unsupervised Approach

Extract homogeneous meaningful or useful categories from the data
Discover/learn how the data is organized, natural structure
No ground-truth outputs for training : unsupervised

Objectives

1 Understanding: Biology and medicine, finance, text mining, web, ...

2 Utility: Use cluster characteristics instead of the original data (dimension
reduction, regression of high-dimensional data, ...)

The labels are unknown!

Introduction to clustering F. Pascal 28 / 78

Dimension reduction vs Clustering
Let X = (x1, ...,xN) be a set of N training samples

Dimension reduction

Project X ∈RN ,d onto Z ∈RN ,q

with q < d

Visualize, denoise, reduce
computational cost, ...

Clustering

Groupe similar samples xi into
clusters Ck

Based on a dissimilarity metric
D(C1,C2)

Introduction to clustering F. Pascal 29 / 78

Clustering Applications

Market segmentation
x: purchase history
Ck: market segments

Medical image segmentation

x: image pixels, voxels
Ck: blood, muscle, tumor, ...

Text mining
x: text, e-mails, ...
Ck: folders, themes, ...

Introduction to clustering F. Pascal 30 / 78

Key Questions on Clustering

Types of clustering ?

How to characterize a cluster ?

How to define similarity or dissimilarity between samples ?

The real/optimal number of clusters ?

What algorithms can we use and when ?

How to evaluate a clustering result ? (subjectivity)

Introduction to clustering F. Pascal 31 / 78

Today’s Lecture

I. Classification
Reminders on linear SVMs
SVM - Handling non-linear boundaries: Kernel Machines

II. Introduction to clustering
III. Reminders on Clustering

Types of methods and clusters
Distance and Dissimilarity
Clustering Quality

IV. Clustering algorithms
K-means
Hierarchical clustering
DBSCAN
HDBSCAN

Today’s Lecture

I. Classification
Reminders on linear SVMs
SVM - Handling non-linear boundaries: Kernel Machines

II. Introduction to clustering
III. Reminders on Clustering

Types of methods and clusters
Distance and Dissimilarity
Clustering Quality

IV. Clustering algorithms
K-means
Hierarchical clustering
DBSCAN
HDBSCAN

Types of clustering: Partitional vs Hierarchical

Partitional

Division into non-overlapping
subsets
Each data point is in exactly
one subset

Hierarchical

Clusters can have sub-clusters
Set of nested clusters,
organized as a tree

Reminders on Clustering Types of methods and clusters F. Pascal 32 / 78

Types of Clusters

Well-separated: Any point in a cluster is closer (or more similar) to
every other point in the cluster than to any point not in the cluster.

Prototype-Based: an object in a cluster is closer (more similar) to the
“center” of a cluster, than to the center of any other cluster →
Assumptions about shape

• Center = centroid (average) or medoid (most representative)

Density-based: dense region of points, which is separated by
low-density regions, from other regions of high density. Used when the
clusters are irregular or intertwined, and when noise and outliers are
present → Is data driven

Others... graph-based...

Reminders on Clustering Types of methods and clusters F. Pascal 33 / 78

Distinctions between sets of clusters

Exclusive vs non-exclusive (overlapping): separate clusters vs points
may belong to more than one cluster

Fuzzy vs non-fuzzy: each observation xi belongs to every cluster Ck

with a given weight wk ∈ [0,1] and
∑K

k=1 wk = 1 (Similar to probabilistic
clustering).

Partial vs Complete: all data are clustered vs there may be
non-clustered data, e.g., outliers, noise, “uninteresting background”...

Homogeneous vs Heterogeneous: Clusters with 6= size, shape, density...

Reminders on Clustering Types of methods and clusters F. Pascal 34 / 78

Today’s Lecture

I. Classification
Reminders on linear SVMs
SVM - Handling non-linear boundaries: Kernel Machines

II. Introduction to clustering
III. Reminders on Clustering

Types of methods and clusters
Distance and Dissimilarity
Clustering Quality

IV. Clustering algorithms
K-means
Hierarchical clustering
DBSCAN
HDBSCAN

Dissimilarity Measures

Dissimilarity is a function of the pair (x,y): D : E×E→R+ s.t

D(x,y) =D(y,x) ≥ 0 and D(x,x) = 0 ∀x ∈ E

Distance is a dissimilarity measure that satisfies also

1 D(x,y) = 0 ⇐⇒ x = y

2 D(x,y) ≤D(x,z)+D(z,y) (metric)

Common distances

Minkowski: D(x,y) = (∑d
j=1 |xj −yj|q

) 1
q

(q = 2 → Euclidian distance, q = 1 →: Manhattan distance)

Mahalanobis: D(x,y) = [
(x−y)TΣ−1(x−y)

] 1
2

Hamming: number of indexes where the 2 vectors differ

Reminders on Clustering Distance and Dissimilarity F. Pascal 35 / 78

Dissimilarity Between Clusters (1/2)
Minimum : D(Ci,Cj) = min

x∈Ci ,y∈Cj

D(x,y)

Maximum : D(Ci,Cj) = max
x∈Ci ,y∈Cj

D(x,y)

Group Average : D(Ci,Cj) =
1

ni nj

∑
x∈Ci

∑
y∈Cj

D(x,y)

Between Centroids : D(Ci,Cj) =D(mi,mj),

with mi =
1

ni

∑
x∈Ci

x

Reminders on Clustering Distance and Dissimilarity F. Pascal 36 / 78

Dissimilarity Between Clusters (2/2)

Objective function distances

Ward distance: D(Ci,Cj) =
√

2ni nj

ni +nj
D(mi,mj)

WPGMA (Weighted Pair Group Method with Arithmetic Mean)
recursive distance

D(Ci,Cj) ==
D(C 1

i ,Cj)+D(C 2
i ,Cj)

2

where C 1
i ,C 2

i are the child clusters of Ci

Reminders on Clustering Distance and Dissimilarity F. Pascal 37 / 78

Today’s Lecture

I. Classification
Reminders on linear SVMs
SVM - Handling non-linear boundaries: Kernel Machines

II. Introduction to clustering
III. Reminders on Clustering

Types of methods and clusters
Distance and Dissimilarity
Clustering Quality

IV. Clustering algorithms
K-means
Hierarchical clustering
DBSCAN
HDBSCAN

What makes a good clustering ?

Centroid: mi =
1

ni

∑
x∈Ci

x

Inertia: Ji =∑
x∈Ci

D2(xg,mi)

(low Ji corresponds to a smaller dispersion of points around mi.)

Within distance: Jw =∑
i
∑

x∈Ci
D2(xg,mi) =∑

i Ji

Between distance: Jb =
∑

i niD
2(mi,m)

where m is the sample mean m = 1

n

∑
x

Performance measures: accuracy (when ground truth is known), ARI
(Adjusted Rand Index), AMI (Adjusted Mutual Information)...

A good clustering...
Minimizes the within distance Jw and maximizes the between distance Jb

Reminders on Clustering Clustering Quality F. Pascal 38 / 78

Illustrative example
Objective
Cluster noisy data for a segmentation application in image processing

(a) Tree data (b) Noisy tree data

Figure: Data on which the clustering algorithms are evaluated

Should be easy...
Reminders on Clustering Clustering Quality F. Pascal 39 / 78

Today’s Lecture

I. Classification
Reminders on linear SVMs
SVM - Handling non-linear boundaries: Kernel Machines

II. Introduction to clustering
III. Reminders on Clustering

Types of methods and clusters
Distance and Dissimilarity
Clustering Quality

IV. Clustering algorithms
K-means
Hierarchical clustering
DBSCAN
HDBSCAN

Today’s Lecture

I. Classification
Reminders on linear SVMs
SVM - Handling non-linear boundaries: Kernel Machines

II. Introduction to clustering
III. Reminders on Clustering

Types of methods and clusters
Distance and Dissimilarity
Clustering Quality

IV. Clustering algorithms
K-means
Hierarchical clustering
DBSCAN
HDBSCAN

K-means

It is a prototype-based clustering technique.

Notations: n unlabelled data vectors of Rp denoted as x = (x1, ...,xn) which

should be split into K classes C1, ...,CK , with Card(Ck) = nk,
K∑

k=1
nk = n.

Centroid of Ck is denoted mk.

Optimal solution
Number of partitions of x into K subsets:

P(n,K) = 1

K !

K∑
k=0

kn (−1)K−k Ck
K for K < n

where Ck
K = K !

k! (K −k)!
.

Example: P(100,5) ≈ 1068 !!!!

Clustering algorithms K-means F. Pascal 40 / 78

K-means algorithm
Partitional clustering approach where K of clusters must be specified
Each observation is assigned to the cluster with the closest centroid
Minimizes the intra-cluster variance V =∑

k
∑

i|xi∈Ck
1

nk
||xi −mk||2

The basic algorithm is very simple

Algorithm 1 K -means algorithm
Input : x observation vectors and the number K of clusters
Output : z = (z1, . . . ,zN), the labels of (x1, . . . ,xN)
Initialization : Randomly select K points as the initial centroids
Until convergence (define a criterion, e.g. error, changes, centroids estima-
tion...) Repeat

1 Form K clusters by assigning xi to the closest centroid mk

Ck = {xi, ∀i ∈ {1, ...,n} | d(xi,mk) ≤ d(xi −mj) ,∀j ∈ {1, ...,K } }
2 Recompute the centroids

∀k ∈ {1, ...,K } : mk = 1
nk

∑
xi∈Ck

xi.

Clustering algorithms K-means F. Pascal 41 / 78

K-means drawbacks and alternatives

K-means is simple but ...
Solution depends on initialization
Need to know K in advance
Can’t handle noise or outliers : non-robust
Fails with clusters of non-convex shapes

Several alternatives
K-means++: Seeding algorithm to initialize clusters with centroids
“spread-out” throughout the data
K-medoids: To address the robustness aspects
Kernel K-means: For overcoming the convex shape
Many others ...

Clustering algorithms K-means F. Pascal 42 / 78

Correct initilization

Importance of Choosing Initial Centroids

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

0

0.5

1

1.5

2

2.5

3

x

y

Iteration 1

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

0

0.5

1

1.5

2

2.5

3

x

y

Iteration 2

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

0

0.5

1

1.5

2

2.5

3

x

y

Iteration 3

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

0

0.5

1

1.5

2

2.5

3

x

y

Iteration 4

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

0

0.5

1

1.5

2

2.5

3

x

y

Iteration 5

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

0

0.5

1

1.5

2

2.5

3

x

y

Iteration 6

02/14/2018 Introduction to Data Mining, 2nd Edition 34

Importance of Choosing Initial Centroids

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

0

0.5

1

1.5

2

2.5

3

x

y

Iteration 1

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

0

0.5

1

1.5

2

2.5

3

x
y

Iteration 2

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

0

0.5

1

1.5

2

2.5

3

x

y

Iteration 3

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

0

0.5

1

1.5

2

2.5

3

x

y

Iteration 4

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

0

0.5

1

1.5

2

2.5

3

x

y

Iteration 5

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

0

0.5

1

1.5

2

2.5

3

x
y

Iteration 6

Clustering algorithms K-means F. Pascal 43 / 78

Correct initilization

Importance of Choosing Initial Centroids

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

0

0.5

1

1.5

2

2.5

3

x

y
Iteration 1

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

0

0.5

1

1.5

2

2.5

3

x

y
Iteration 2

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

0

0.5

1

1.5

2

2.5

3

x

y
Iteration 3

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

0

0.5

1

1.5

2

2.5

3

x

y
Iteration 4

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

0

0.5

1

1.5

2

2.5

3

x

y
Iteration 5

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

0

0.5

1

1.5

2

2.5

3

x

y
Iteration 6

02/14/2018 Introduction to Data Mining, 2nd Edition 34

Importance of Choosing Initial Centroids

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

0

0.5

1

1.5

2

2.5

3

x

y

Iteration 1

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

0

0.5

1

1.5

2

2.5

3

x

y

Iteration 2

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

0

0.5

1

1.5

2

2.5

3

x

y

Iteration 3

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

0

0.5

1

1.5

2

2.5

3

x

y

Iteration 4

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

0

0.5

1

1.5

2

2.5

3

x

y

Iteration 5

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

0

0.5

1

1.5

2

2.5

3

x

y

Iteration 6

Clustering algorithms K-means F. Pascal 44 / 78

Bad initialization

Importance of Choosing Initial Centroids …

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

0

0.5

1

1.5

2

2.5

3

x

y

Iteration 1

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

0

0.5

1

1.5

2

2.5

3

x

y

Iteration 2

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

0

0.5

1

1.5

2

2.5

3

x

y

Iteration 3

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

0

0.5

1

1.5

2

2.5

3

x

y

Iteration 4

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

0

0.5

1

1.5

2

2.5

3

x

y

Iteration 5

02/14/2018 Introduction to Data Mining, 2nd Edition 36

Importance of Choosing Initial Centroids …

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

0

0.5

1

1.5

2

2.5

3

x

y

Iteration 1

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

0

0.5

1

1.5

2

2.5

3

x

y

Iteration 2

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

0

0.5

1

1.5

2

2.5

3

x

y

Iteration 3

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

0

0.5

1

1.5

2

2.5

3

x

y

Iteration 4

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

0

0.5

1

1.5

2

2.5

3

x

y

Iteration 5

Clustering algorithms K-means F. Pascal 45 / 78

Results on the data set

(a) K-means++ (b) “Clusters”

Figure: Clustering obtained with two different initialization techniques

Comments...

Clustering algorithms K-means F. Pascal 46 / 78

Today’s Lecture

I. Classification
Reminders on linear SVMs
SVM - Handling non-linear boundaries: Kernel Machines

II. Introduction to clustering
III. Reminders on Clustering

Types of methods and clusters
Distance and Dissimilarity
Clustering Quality

IV. Clustering algorithms
K-means
Hierarchical clustering
DBSCAN
HDBSCAN

Hierarchical clustering Principles

Produces a set of nested clusters organized as a hierarchical tree →
bypass choice of K

Can be visualized as a dendrogram: a tree like diagram that records
the sequences of merges or splits with branch length corresponding to
cluster distance

Two approaches
1 Agglomerative: Bottom-up - Start with as much clusters as

observations and iteratively aggregate observations using a given
distance

2 Divise: Top-down - Start with one cluster containing all observations
and iteratively split into smaller clusters

Clustering algorithms Hierarchical clustering F. Pascal 47 / 78

Hierarchical Clustering: The tree
	
	
	
	
	
	
	
	
	
	
	
	
 P1

 P2
 P4

 P3

 dqdsqddsqdqdqdqdqdsqdezffer

 (a) Hierarchical Clusters

	
	
	
	
	
	
	
	
	
	
	
	
 P1

 P2
 P4

 P3

 dqdsqddsqdqdqdqdqdsqdezffer

 P1 P2 P3 P4

 (b) Dendrogram

We can see that ...
Each node (cluster) in the tree (except the leaf nodes) is the union of
its children (subclusters)
The root of the tree is the cluster containing all objects.

Clustering algorithms Hierarchical clustering F. Pascal 48 / 78

Hierarchical clustering example

02/14/2018 Introduction to Data Mining, 2nd Edition 49

Bisecting K-­means Example

02/14/2018 Introduction to Data Mining, 2nd Edition 50

Hierarchical Clustering

● Produces a set of nested clusters organized as a
hierarchical tree

● Can be visualized as a dendrogram
– A tree like diagram that records the sequences of
merges or splits

1 3 2 5 4 6
0

0.05

0.1

0.15

0.2

1

2

3

4

5

6

1

2
3 4

5

Figure: General principles

Clustering algorithms Hierarchical clustering F. Pascal 49 / 78

Inter-Cluster distance

Most popular clustering techniques

Algorithm 2 Agglomerative hierarchical clustering
Input : x observation vectors and “cutting” threshold λ
Output : all merged clusters set (at each iteration) and “inter-cluster”
distances (between clusters)
Initialization : n = sample size = number of clusters.

While Number of clusters > 1

1 Compute distances between clusters
2 Merged the two nearest clusters

Clustering algorithms Hierarchical clustering F. Pascal 50 / 78

Inter-Cluster distances
MIN → Single Linkage: d(Ci,Cj) = min

x∈Ci,y∈Cj

d(x,y)

MAX → Complete Linkage: d(Ci,Cj) = max
x∈Ci,y∈Cj

d(x,y)

Group Average → Average Linkage: d(Ci,Cj) =
1

ni nj

∑
x∈Ci

∑
y∈Cj

d(x,y)

Between centroid → Centroid Linkage: d(Ci,Cj) = d(mi,mj), with

mi =
1

ni

∑
x∈Ci

x

Objective function → Objective Linkage:

Ward distance d(Ci,Cj) =
√

2ni nj

ni +nj
d(mi,mj)

WPGMA (Weighted Pair Group Method with Arithmetic Mean)

recursive distance d(Ci,Cj) ==
d(C 1

i ,Cj)+d(C 2
i ,Cj)

2
where

C 1
i ,C 2

i are the child clusters of Ci

...
Clustering algorithms Hierarchical clustering F. Pascal 51 / 78

Different distances ⇒ different results

02/14/2018 Introduction to Data Mining, 2nd Edition 63

MIN or Single Link

● Proximity of two clusters is based on the two
closest points in the different clusters
– Determined by one pair of points, i.e., by one link in the
proximity graph

● Example:
Distance Matrix:

02/14/2018 Introduction to Data Mining, 2nd Edition 64

Hierarchical Clustering: MIN

Nested Clusters Dendrogram

1

2

3

4

5

6

1
2

3

4

5

3 6 2 5 4 1
0

0.05

0.1

0.15

0.2

(a) MIN

02/14/2018 Introduction to Data Mining, 2nd Edition 67

MAX or Complete Linkage

● Proximity of two clusters is based on the two
most distant points in the different clusters
– Determined by all pairs of points in the two clusters

Distance Matrix:

02/14/2018 Introduction to Data Mining, 2nd Edition 68

Hierarchical Clustering: MAX

Nested Clusters Dendrogram

3 6 4 1 2 5
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

1

2

3

4

5

6
1

2 5

3

4

(b) MAX

Clustering algorithms Hierarchical clustering F. Pascal 52 / 78

Different distances ⇒ different results

02/14/2018 Introduction to Data Mining, 2nd Edition 71

Group Average

● Proximity of two clusters is the average of pairwise proximity
between points in the two clusters.

● Need to use average connectivity for scalability since total
proximity favors large clusters

||Cluster||Cluster

)p,pproximity(

)Cluster,Clusterproximity(
ji

Clusterp
Clusterp

ji

ji
jj
ii

×
=

∑
∈
∈

Distance Matrix:

02/14/2018 Introduction to Data Mining, 2nd Edition 72

Hierarchical Clustering: Group Average

Nested Clusters Dendrogram

3 6 4 1 2 5
0

0.05

0.1

0.15

0.2

0.25

1

2

3

4

5

6
1

2

5

3

4

Figure: Group average

Ward: very similar results.
MIN : can handle non-elliptical shape BUT sensitive to outliers, noise...
MAX: less sensitive to outliers BUT can break large clusters and
biased towards globular clusters
Average: don’t break large clusters BUT biased towards globular
clusters
Ward: Hierarchical analogue of K-means
Clustering algorithms Hierarchical clustering F. Pascal 53 / 78

Results on the data set - Single Linkage

(a) Noisy Tree (b) Single Linkage

(c) Dendrogram (d) Cutting Threshold
Clustering algorithms Hierarchical clustering F. Pascal 54 / 78

Results on the data set - Complete Linkage

(e) Noisy Tree (f) Complete Linkage

(g) Dendrogram (h) Cutting Threshold
Clustering algorithms Hierarchical clustering F. Pascal 55 / 78

Results on the data set - Average Linkage

(i) Noisy Tree (j) Average Linkage

(k) Dendrogram (l) Cutting Threshold
Clustering algorithms Hierarchical clustering F. Pascal 56 / 78

Results on the data set - Ward Linkage

(m) Noisy Tree (n) Average Linkage

(o) Dendrogram (p) Cutting Threshold
Clustering algorithms Hierarchical clustering F. Pascal 57 / 78

Results on the data set - WPGMA Linkage

(q) Noisy Tree (r) Average Linkage

(s) Dendrogram (t) Cutting Threshold
Clustering algorithms Hierarchical clustering F. Pascal 58 / 78

Hierarchical clustering - Pros and cons

Pros
Simple and intuitive
Unsupervised: no a priori assumptions
Interpretable: number of clusters, used distance...

Cons
Computational cost: single linkage (O(n3),O(n2) or O(n)),
complete linkage (O(n3) or O(n2)), average (O(n3)), Ward’s
method (O(n3)), ...
Cutting threshold: challenging choice!
Lack of robustness: sensitivity to outliers and noise
No global objective function to optimize
Handle heterogeneous data (clusters of 6= size, non-globular
shapes...)

Clustering algorithms Hierarchical clustering F. Pascal 59 / 78

Today’s Lecture

I. Classification
Reminders on linear SVMs
SVM - Handling non-linear boundaries: Kernel Machines

II. Introduction to clustering
III. Reminders on Clustering

Types of methods and clusters
Distance and Dissimilarity
Clustering Quality

IV. Clustering algorithms
K-means
Hierarchical clustering
DBSCAN
HDBSCAN

DBSCAN : A Density-based Algorithm

For an observation xi, find a sufficiently (MinPts) large neighborhood (ε),
then

aggregate the new observations (neighbors) to the cluster Ck of xi,
else xi is an isolated observation (outlier).

This results in three types of points called core, border, or noise points.

Key parameters
ε and ε-neighborhood: Nε(xi) = {z|d(xi,z) < ε}

MinPts: nmin for defining core points xi s.t. card(Nε(xi)) ≥ nmin

Clustering algorithms DBSCAN F. Pascal 60 / 78

DBSCAN: Three Types of Points

1 Core point: is near the center of a cluster/has MinPts neighbors
2 Border point: is not a core point, but is in the neighborhood of a

core point
3 Noise point: is any point that is neither a core nor a border point

02/14/2018 Introduction to Data Mining, 2nd Edition 81

DBSCAN: Core, Border, and Noise Points

MinPts = 7

02/14/2018 Introduction to Data Mining, 2nd Edition 82

DBSCAN Algorithm

● Eliminate noise points
● Perform clustering on the remaining points

Clustering algorithms DBSCAN F. Pascal 61 / 78

DBSCAN: Influence of ε

The parameter ε represents the minimum distance between two
non-neighboring points:
→ A very large ε causes all possible clusters to merge into one cluster
→ A very small ε leads to a lot of noise, points are not assigned to

clusters

Clustering algorithms DBSCAN F. Pascal 62 / 78

DBSCAN: So how do we choose ε ?

Depends on the distance between the data points
The Elbow trick on the k-NN plot is commonly used in practice (k is
MinPts!):
→ x-axis all the points
→ y-axis the average distance of each point to their its k-NN

Remains a difficult choice!

Clustering algorithms DBSCAN F. Pascal 63 / 78

DBSCAN algorithm

Algorithm 3 DBSCAN algorithm
Input: x observations, ε, MinPts
Output: Z , labels of x
For all xi

1 Verify that xi has not been visited by the algo, else xi is marked “as
visited”

2 Identify the ε-neighborhood of xi, Nε(xi).
3 If card(Nε(xi)) ≤ nmin, then mark P as an isolated point.

Else Create a cluster Ck containing xi and run
class_extension(Ck,xi,ε,nmin)

Clustering algorithms DBSCAN F. Pascal 64 / 78

Cluster extension

Algorithm 4 Extension class function
Input: Cluster Ck to increase, observation xi of Ck, nmin, ε.

Output : Z labels of observations in Nε(xi)

Forall xj, i 6= j of Nε(xi)

1 Verify that xj has not been visited by the algo, else xi is marked “as
visited”

2 Identify the ε-neighborhood of xj, Nε(xj).
3 If card(Nε(xj)) ≥ nmin

Nε(xi) =Nε(xi)+Nε(xj)

4 If xj is not clustered, add to Ck.

Clustering algorithms DBSCAN F. Pascal 65 / 78

Illustration of DBSCAN principles

Figure: Clustering results obtained with DBSCAN algorithm.

Clustering algorithms DBSCAN F. Pascal 66 / 78

Results on the data set - DBSCAN

(a) MinPts = 4 (b) MinPts = 256

Figure: Influence of MinPts and ε

Discussion: ε, number of clusters, MinPts...
Pros: Resistant to Noise, can handle clusters of different shapes and
sizes
Cons: Interpretable parameters (estimation), Varying densities,
High-dimensional data
Clustering algorithms DBSCAN F. Pascal 67 / 78

Algorithms comparison

Figure: From Scikits learn: https://ogrisel.github.io/scikit-learn.org/
sklearn-tutorial/modules/clustering.html

Clustering algorithms DBSCAN F. Pascal 68 / 78

https://ogrisel.github.io/scikit-learn.org/sklearn-tutorial/modules/clustering.html
https://ogrisel.github.io/scikit-learn.org/sklearn-tutorial/modules/clustering.html

Today’s Lecture

I. Classification
Reminders on linear SVMs
SVM - Handling non-linear boundaries: Kernel Machines

II. Introduction to clustering
III. Reminders on Clustering

Types of methods and clusters
Distance and Dissimilarity
Clustering Quality

IV. Clustering algorithms
K-means
Hierarchical clustering
DBSCAN
HDBSCAN

HDBSCAN

Key Idea: Convert DBSCAN into a hierarchical clustering algorithm and
→ bypass the choice of the ε-parameter!
→ scan all possible solutions with all values of ε

Main steps:
1 Transform the space according to the density/sparsity
2 Build the minimum spanning tree of the distance weighted graph
3 Construct a cluster hierarchy of connected components.
4 Condense the cluster hierarchy based on minimum cluster size.
5 Extract the stable clusters from the condensed tree.

Easier to understand with an example!

Campello, R.J., Moulavi, D. and Sander, J., “Density-based clustering based on
hierarchical density estimates”. In Pacific-Asia conference on knowledge discovery and
data mining (pp. 160-172). Springer, Berlin, Heidelberg, April 2013.

Clustering algorithms HDBSCAN F. Pascal 69 / 78

HDBSCAN

Key Idea: Convert DBSCAN into a hierarchical clustering algorithm and
→ bypass the choice of the ε-parameter!
→ scan all possible solutions with all values of ε

Main steps:
1 Transform the space according to the density/sparsity
2 Build the minimum spanning tree of the distance weighted graph
3 Construct a cluster hierarchy of connected components.
4 Condense the cluster hierarchy based on minimum cluster size.
5 Extract the stable clusters from the condensed tree.

Easier to understand with an example!

Campello, R.J., Moulavi, D. and Sander, J., “Density-based clustering based on
hierarchical density estimates”. In Pacific-Asia conference on knowledge discovery and
data mining (pp. 160-172). Springer, Berlin, Heidelberg, April 2013.

Clustering algorithms HDBSCAN F. Pascal 69 / 78

HDBSCAN: Illustrative examplehdbscan Documentation, Release 0.8.1

Now, the best way to explain HDBSCAN is actually just use it and then go through the steps that occurred along the
way teasing out what is happening at each step. So let’s load up the hdbscan library and get to work.

import hdbscan

clusterer = hdbscan.HDBSCAN(min_cluster_size=5, gen_min_span_tree=True)
clusterer.fit(test_data)

HDBSCAN(algorithm='best', alpha=1.0, approx_min_span_tree=True,
gen_min_span_tree=True, leaf_size=40, memory=Memory(cachedir=None),
metric='euclidean', min_cluster_size=5, min_samples=None, p=None)

So now that we have clustered the data – what actually happened? We can break it out into a series of steps

1. Transform the space according to the density/sparsity.

2. Build the minimum spanning tree of the distance weighted graph.

3. Construct a cluster hierarchy of connected components.

4. Condense the cluster hierarchy based on minimum cluster size.

5. Extract the stable clusters from the condensed tree.

2.1.1 Transform the space

To find clusters we want to find the islands of higher density amid a sea of sparser noise – and the assumption of noise
is important: real data is messy and has outliers, corrupt data, and noise. The core of the clustering algorithm is single

38 Chapter 2. Background on Clustering with HDBSCAN

©https://hdbscan.readthedocs.io/en/latest/how_hdbscan_works.html

Clustering algorithms HDBSCAN F. Pascal 70 / 78

Step 1: Transform The Space

Goal: Prepare the data for a single linkage clustering (real data is
noisy and single linkage is not robust!)
Key idea: Push sparse points away from the rest of the data before
clustering
The islands/sea analogy → Make sea points more distant from each
other and from the land

How do we evaluate density ?
Need an inexpensive density estimate ⇒ k-NN is the simplest
Call it the core distance for parameters k and point xi, corek(xi)

And how do we connect points now ?

Clustering algorithms HDBSCAN F. Pascal 71 / 78

Step 1: Transform The Space

Goal: Prepare the data for a single linkage clustering (real data is
noisy and single linkage is not robust!)
Key idea: Push sparse points away from the rest of the data before
clustering
The islands/sea analogy → Make sea points more distant from each
other and from the land

How do we evaluate density ?
Need an inexpensive density estimate ⇒ k-NN is the simplest
Call it the core distance for parameters k and point xi, corek(xi)

And how do we connect points now ?

Clustering algorithms HDBSCAN F. Pascal 71 / 78

Step 1 : Mutual Reachability Distance

A new distance metric is defined as

dmreach−k(xi,xj) = max(corek(xi),corek(xj),d(xi,xj)),

Meaning that we want to connect points that are
1 Close enough to each other : d(xi,xj)

2 In a dense enough region : corek(xi)

Clustering algorithms HDBSCAN F. Pascal 72 / 78

Step 2 : The Minimum Spanning Tree

Goal: Prepare the data for clustering using dmreach

Key ideas:
Construct a graph that connects all points
Start disconnecting them by lowering a threshold (sea level drops)
Points are the vertices and the edges are weighted by dmreach

n2 possible edges → the minimum spanning tree

Algorithms from graph theory

Prim’s algorithm
Dual Tree Boruvka

hdbscan Documentation, Release 0.8.1

2.1.3 Build the cluster hierarchy

Given the minimal spanning tree, the next step is to convert that into the hierarchy of connected components. This
is most easily done in the reverse order: sort the edges of the tree by distance (in increasing order) and then iterate
through, creating a new merged cluster for each edge. The only difficult part here is to identify the two clusters each
edge will join together, but this is easy enough via a union-find data structure. We can view the result as a dendrogram
as we see below:

clusterer.single_linkage_tree_.plot(cmap='viridis', colorbar=True)

2.1. How HDBSCAN Works 41

Clustering algorithms HDBSCAN F. Pascal 73 / 78

Step 3: Build the cluster hierarchy

Clusters emerge progressively as we lower the dmreach threshold (→ sort the
edges and start single linkage)

hdbscan Documentation, Release 0.8.1

This brings us to the point where robust single linkage stops. We want more though; a cluster hierarchy is good, but
we really want a set of flat clusters. We could do that by drawing a a horizontal line through the above diagram and
selecting the clusters that it cuts through. This is in practice what DBSCAN effectively does (declaring any singleton
clusters at the cut level as noise). The question is, how do we know where to draw that line? DBSCAN simply leaves
that as a (very unintuitive) parameter. Worse, we really want to deal with variable density clusters and any choice of
cut line is a choice of mutual reachability distance to cut at, and hence a single fixed density level. Ideally we want to
be able to cut the tree at different places to select our clusters. This is where the next steps of HDBSCAN begin and
create the difference from robust single linkage.

2.1.4 Condense the cluster tree

The first step in cluster extraction is condensing down the large and complicated cluster hierarchy into a smaller tree
with a little more data attached to each node. As you can see in the hierarchy above it is often the case that a cluster
split is one or two points splitting off from a cluster; and that is the key point – rather than seeing it as a cluster splitting
into two new clusters we want to view it as a single persistent cluster that is ‘losing points’. To make this concrete
we need a notion of minimum cluster size which we take as a parameter to HDBSCAN. Once we have a value for
minimum cluster size we can now walk through the hierarchy and at each split ask if one of the new clusters created by
the split has fewer points than the minimum cluster size. If it is the case that we have fewer points than the minimum
cluster size we declare it to be ‘points falling out of a cluster’ and have the larger cluster retain the cluster identity of
the parent, marking down which points ‘fell out of the cluster’ and at what distance value that happened. If on the
other hand the split is into two clusters each at least as large as the minimum cluster size then we consider that a true
cluster split and let that split persist in the tree. After walking through the whole hierarchy and doing this we end up
with a much smaller tree with a small number of nodes, each of which has data about how the size of the cluster at
that node decreases over varying distance. We can visualize this as a dendrogram similar to the one above – again we
can have the width of the line represent the number of points in the cluster. This time, however, that width varies over

42 Chapter 2. Background on Clustering with HDBSCAN

Clustering algorithms HDBSCAN F. Pascal 74 / 78

Step 4 : Condense the cluster tree

Get rid of levels that resulted in noise : nbr of points ≤ Cmin
(clusters are shrinking 6= splitting)

hdbscan Documentation, Release 0.8.1

the length of the line as points fall out of the cluster. For our data using a minimum cluster size of 5 the result looks
like this:

clusterer.condensed_tree_.plot()

This is much easier to look at and deal with, particularly in as simple a clustering problem as our current test dataset.
However we still need to pick out clusters to use as a flat clustering. Looking at the plot above should give you some
ideas about how one might go about doing this.

2.1.5 Extract the clusters

Intuitively we want the choose clusters that persist and have a longer lifetime; short lived clusters are probably merely
artifacts of the single linkage approach. Looking at the previous plot we could say that we want to choose those clusters
that have the greatest area of ink in the plot. To make a flat clustering we will need to add a further requirement that,
if you select a cluster, then you cannot select any cluster that is a descendant of it. And in fact that intuitive notion of
what should be done is exactly what HDBSCAN does. Of course we need to formalise things to make it a concrete
algorithm.

First we need a different measure than distance to consider the persistence of clusters; instead we will use 𝜆 = 1
distance .

For a given cluster we can then define values 𝜆birth and 𝜆death to be the lambda value when the cluster split off and
became it’s own cluster, and the lambda value (if any) when the cluster split into smaller clusters respectively. In turn,
for a given cluster, for each point p in that cluster we can define the value 𝜆𝑝 as the lambda value at which that point
‘fell out of the cluster’ which is a value somewhere between 𝜆birth and 𝜆death since the point either falls out of the
cluster at some point in the cluster’s lifetime, or leaves the cluster when the cluster splits into two smaller clusters.
Now, for each cluster compute the stability as
∑︀

𝑝∈cluster(𝜆𝑝 − 𝜆birth).

2.1. How HDBSCAN Works 43

Clustering algorithms HDBSCAN F. Pascal 75 / 78

Extract the clusters
Key idea: Choose clusters that persist (live for a long time) and that are
large → maximize a stability criterion
(flat clustering: can’t select descendance of a selected cluster!)

hdbscan Documentation, Release 0.8.1

Declare all leaf nodes to be selected clusters. Now work up through the tree (the reverse topological sort order). If the
sum of the stabilities of the child clusters is greater than the stability of the cluster, then we set the cluster stability to
be the sum of the child stabilities. If, on the other hand, the cluster’s stability is greater than the sum of its children
then we declare the cluster to be a selected cluster and unselect all its descendants. Once we reach the root node we
call the current set of selected clusters our flat clustering and return that.

Okay, that was wordy and complicated, but it really is simply performing our ‘select the clusters in the plot with the
largest total ink area’ subject to descendant constraints that we explained earlier. We can select the clusters in the
condensed tree dendrogram via this algorithm, and you get what you expect:

clusterer.condensed_tree_.plot(select_clusters=True, selection_palette=sns.color_
→˓palette())

Now that we have the clusters it is a simple enough matter to turn that into cluster labelling as per the sklearn API. Any
point not in a selected cluster is simply a noise point (and assigned the label -1). We can do a little more though: for
each cluster we have the 𝜆𝑝 for each point p in that cluster; If we simply normalize those values (so they range from
zero to one) then we have a measure of the strength of cluster membership for each point in the cluster. The hdbscan
library returns this as a probabilities_ attribute of the clusterer object. Thus, with labels and membership
strengths in hand we can make the standard plot, choosing a color for points based on cluster label, and desaturating
that color according the strength of membership (and make unclustered points pure gray).

palette = sns.color_palette()
cluster_colors = [sns.desaturate(palette[col], sat)

if col >= 0 else (0.5, 0.5, 0.5) for col, sat in
zip(clusterer.labels_, clusterer.probabilities_)]

plt.scatter(test_data.T[0], test_data.T[1], c=cluster_colors, **plot_kwds)

44 Chapter 2. Background on Clustering with HDBSCAN

Clustering algorithms HDBSCAN F. Pascal 76 / 78

Results
hdbscan Documentation, Release 0.8.1

And that is how HDBSCAN works. It may seem somewhat complicated – there are a fair number of moving parts
to the algorithm – but ultimately each part is actually very straightforward and can be optimized well. Hopefully
with a better understanding both of the intuitions and some of the implementation details of HDBSCAN you will
feel motivated to try it out. The library continues to develop, and will provide a base for new ideas including a near
parameterless Persistent Density Clustering algorithm, and a new semi-supervised clustering algorithm.

2.2 Comparing Python Clustering Algorithms

There are a lot of clustering algorithms to choose from. The standard sklearn clustering suite has thirteen different
clustering classes alone. So what clustering algorithms should you be using? As with every question in data science
and machine learning it depends on your data. A number of those thirteen classes in sklearn are specialised
for certain tasks (such as co-clustering and bi-clustering, or clustering features instead data points). Obviously an
algorithm specializing in text clustering is going to be the right choice for clustering text data, and other algorithms
specialize in other specific kinds of data. Thus, if you know enough about your data, you can narrow down on the
clustering algorithm that best suits that kind of data, or the sorts of important properties your data has, or the sorts of
clustering you need done. All well and good, but what if you don’t know much about your data? If, for example, you
are ‘just looking’ and doing some exploratory data analysis (EDA) it is not so easy to choose a specialized algorithm.
So, what algorithm is good for exploratory data analysis?

2.2.1 Some rules for EDA clustering

To start, lets’ lay down some ground rules of what we need a good EDA clustering algorithm to do, then we can set
about seeing how the algorithms available stack up.

2.2. Comparing Python Clustering Algorithms 45

Clustering algorithms HDBSCAN F. Pascal 77 / 78

HDBSCAN: Summary
Implementation: The 5 main steps

1 Compute corek(xi) using MinPts → Measure density

2 Transform the space: use new metric dmreach

→ Robustness to noise!

3 Construct a minimum spanning tree

→ Lower computational cost

4 Simplify/condense the tree using Cmin

→ Preprocessing for the next step

5 Extract final clustering results

→ Maximize cluster stability

In conclusion: Two parameters (MinPts and Cmin), varying densities, robust to
outliers, interpretability...

Clustering algorithms HDBSCAN F. Pascal 78 / 78

HDBSCAN: Summary
Implementation: The 5 main steps

1 Compute corek(xi) using MinPts → Measure density

2 Transform the space: use new metric dmreach

→ Robustness to noise!

3 Construct a minimum spanning tree

→ Lower computational cost

4 Simplify/condense the tree using Cmin

→ Preprocessing for the next step

5 Extract final clustering results

→ Maximize cluster stability

In conclusion: Two parameters (MinPts and Cmin), varying densities, robust to
outliers, interpretability...

Clustering algorithms HDBSCAN F. Pascal 78 / 78

HDBSCAN: Summary
Implementation: The 5 main steps

1 Compute corek(xi) using MinPts → Measure density

2 Transform the space: use new metric dmreach

→ Robustness to noise!

3 Construct a minimum spanning tree

→ Lower computational cost

4 Simplify/condense the tree using Cmin

→ Preprocessing for the next step

5 Extract final clustering results

→ Maximize cluster stability

In conclusion: Two parameters (MinPts and Cmin), varying densities, robust to
outliers, interpretability...

Clustering algorithms HDBSCAN F. Pascal 78 / 78

HDBSCAN: Summary
Implementation: The 5 main steps

1 Compute corek(xi) using MinPts → Measure density

2 Transform the space: use new metric dmreach

→ Robustness to noise!

3 Construct a minimum spanning tree

→ Lower computational cost

4 Simplify/condense the tree using Cmin

→ Preprocessing for the next step

5 Extract final clustering results

→ Maximize cluster stability

In conclusion: Two parameters (MinPts and Cmin), varying densities, robust to
outliers, interpretability...

Clustering algorithms HDBSCAN F. Pascal 78 / 78

HDBSCAN: Summary
Implementation: The 5 main steps

1 Compute corek(xi) using MinPts → Measure density

2 Transform the space: use new metric dmreach

→ Robustness to noise!

3 Construct a minimum spanning tree

→ Lower computational cost

4 Simplify/condense the tree using Cmin

→ Preprocessing for the next step

5 Extract final clustering results

→ Maximize cluster stability

In conclusion: Two parameters (MinPts and Cmin), varying densities, robust to
outliers, interpretability...

Clustering algorithms HDBSCAN F. Pascal 78 / 78

	Classification
	Reminders on linear SVMs
	SVM - Handling non-linear boundaries: Kernel Machines

	Introduction to clustering
	Reminders on Clustering
	Types of methods and clusters
	Distance and Dissimilarity
	Clustering Quality

	Clustering algorithms
	K-means
	Hierarchical clustering
	DBSCAN
	HDBSCAN

