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Course 2

Classification and (hierarchical) Clustering
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Regression vs Classification

Regression Classification
m yeRis a continuous variable m labels are discrete variables
m Predict a numerical value m Binary Classification y€ {0,1},
ye{-1,1}, ...

m Multiclass ye{1,..., K}
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Regression Applications

Financial data

m x: economical, social, political variables \

m y: stock price

Weather prediction

m x: location, ...

m y. temperature value
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Today's Lecture

|. Classification



Today's Lecture

|. Classification
m Reminders on linear SVMs



Linear SVM: Problem Formulation

m Training set of pairs (x;,y),i=1,.,n
m x;eR? and ye{-1,1}

Objective
Find a linear function f(x) = wlx+b, weR% beR that classifies input

samples such that

f(x) >0 x is assigned to class 1

f(x) <0 x is assigned to class -1

Classification Reminders on linear SVMs F. Pascal 7/ 78



Linear SVM: Problem Formulation

m Training set of pairs (x;,y),i=1,.,n
m x;eR? and ye{-1,1}

Objective
Find a linear function f(x) = wlx+b, weR% beR that classifies input

samples such that

f(x) >0 x is assigned to class 1

f(x) <0 x is assigned to class -1

m Classification rule is sign(f(x))
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Max Margin Classifier

Best classifier?
m Decision boundary that is more “stable”, we are confident in all decisions

m We want observations to be as far from the decision boundary as possible

~ large margin

Classification Reminders on linear SVMs F. Pascal 8 /78



Max Margin Classifier

The margin is the smallest distance d(H,x) between the boundary (H) and
any of the observations

A, 1y = YW T+ D) _ [f)
lw Il

o @ class1 |
» class 2| |
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Max Margin Classifier: Canonical Hyperplane

Constraints for the hyperplane: one forces the training samples that are the
closest to the boundary to satisfy

J’i(wai+ h=1—= m)icn lwix+bl =1

m The x; satisfying y;(w!x;+ b) = 1 are the support vectors

|
S - S U~ U -

The geometrical margin M = % J

[wl
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Linear SVM: Optimization Problem

Goal: Maximize the margin while correctly classifying each sample -
constrained optimization problem

Primal problem

.1 .
min =|w|® s.t yi(wai+b)21, Vi=1,..,n
w,b 2

Simple problem since the cost function to optimize is quadratic and the
constraints are linear!

Classification Reminders on linear SVMs F. Pascal 11/ 78



Linear SVM: Dual problem

Lagrangian formulation

1 n
L(w,a) =S| wi? =Y ailyiw i+ b) - 1]
i=1

m «; are the Lagrange multipliers, dual variables

m Set derivatives wrt w and b to zero

n n
Y aiyi=0 and w=) a;yx;

i=1 i=1
m Substitute the latter in L

Maximization problem J

max Triai—-Y%, aiajyiijiij st@;20,Vi and X! a;y;=0
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Linear SVM: solution
Once we have the dual problem...

Find the solution & (quadratic function to optimize and linear
constraints)

Compute the weights according to =" d;y;x;

Two scenarios

X; is on the margin — a;>0
yiw'x;+b)>1 and a;=0

Only the support vectors play a role in prediction !!!

Compute b knowing that d;> 0 satisfy y;(w'x;+b) = 1

Classification function:

n
fE=w"x+b=) ayixx+b
=1

Classification Reminders on linear SVMs F. Pascal
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Linear SVMs: summary

In the primal problem
m Predictions are based on the learnt (n+1) values of w and b

m Parametric approach

In the dual formulation...
m Only the support vectors play a role in prediction

m Central in practice because once the model is trained, a significant
proportion of datapoints can be discarded

N
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8T | ===Decision Frontier| ) . ) )
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Soft SVM: The overlapping case

Key principle:  If the classes are overlapping, we can't learn a perfect linear
classifier

m Allow for some error or slack : ;=0
m The slack relaxes the classification constraint

J’i(wai+b) =>1-¢;

m Minimize the sum of slacks Y7, ¢;

4{® dasse 1
P> classe 2
CPoints Supports

i O

ak
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Soft SVM: Optimization problem

New optimization problem

1 n
min E||w||2+cZ§,- st yiw'xi+h)=1-¢&,&=0Vi
g i=1

m C controls the trade-off between slack errors and margin maximization
— user defined

v

Dual problem (after similar computations...)

n _\n (77 L 55
max Yioy @i— X GijYiViX; X
st0<a;=CVi and Y7 ;=0
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Soft SVM : Examples

Influence of C

Larger C values penalize the slack more -~ narrow margin

Small C Big C

Classification Reminders on linear SVMs F. Pascal 17 / 78



Today's Lecture

|. Classification

m SVM - Handling non-linear boundaries: Kernel Machines



Non-linear Boundaries

6 N AL 8 R N .
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Linear SVM limitations
m The decision boundary is not always linear
m Data are not always vectors (e.g., string, time series, graphs, images

2
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Higher Dimensional Embedding
Key ldea: Data might be linearly separable in a higher dimensional space
m Use a non-linear embedding ®(x) : R” — RY
m Train the SVM using pairs (®(x;), ;)

(Non-linear transformation -~ linear separabilty)

2 ®
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Example

Consider the binary case
The classes 61 ={(1,1), (—1,—1)} and 6> ={(1,—1),(—1,1)} are not linearly
separable. Consider the application ® defined by

R? — RS
{(xlyxZ) — (\/Exly \/Exle) 1) \/EXZ) x%)x%)

The data are separable in the plane (@1, ®,)

Classification Kernel Machines F. Pascal 20 / 78



Non-linear SVM: Kernels
The decision function is now

f@=w'd@+b=) ay®x) @)
SV

The kernel trick
m Exploit the inner product in the dual formulation of SVM
m Define a function k(.,.): y x y — R (similarity in implicit higher
dimensional space)
m Replace the inner product between samples by the kernel k
m Independent of the implicit feature dimension!

m  reduce computational cost from O(n?), O(n?) to O(n) using
k(x,y) = @0 D (y)

Classification Kernel Machines F. Pascal
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Non-linear SVMs: Kernels

A kernel k is a function k(.,.): y x y — R such that

k(x,y) = (D (x),P(y))

What are the conditions on k?

The kernel must be positive-definite to ensure a well-defined dual problem
Symmetric k(x,y) = k(y, x)

And for any positive integer n

i

Ya; ) ) ajalk(xi,x) =0
J

m The associated Gram matrix Ge R"™*" Gj; = k(x;, x;) is positive definite

Classification Kernel Machines F. Pascal
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Common Kernels

Type Name k(x,z)

radial Gaussian exp (— ”’(2;2”2

radial Laplacian exp(—||x — z|| /o)
non stat. X2 exp(—r/a), r=>, {’:‘k:z"k]z
projectif | polynomial (x'z+o)P
projectif cosinus x"z/||x||||z]]
projectif | correlation exp (m -~ cr)

How to choose the right kernel?

Short answer: test it !

m Use cross-validation for the hyperparameters (polynomial order p,

bandwidth o)

Classification Kernel Machines F. Pascal
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Non Linear SVM: kernel formulation

With similar computations of the Lagrangian we obtain...

Dual problem
max 3 ai— YL aiajyiyik(x, X))
st0<a;=CVi and Y7 ;=0

Classification function
F) =) ayik(x;,x) J
SV

Classification Kernel Machines F. Pascal 24 / 78
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Example with Gaussian Kernel

ction:

ﬁ))

(1) Kernel mapping: (2) Learn the decisio
exp( - L2l ftz) =w'_qn( > o
- ic SV

o too large

nice o

o too small
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Non Linear SVM: Summary

m Exploit inner product in dual formulation
m No explicit representation of the non-linear embedding ®

m Can be defined on any kind of data provided we are able to define a measure
of similarity

m Need to save the support vectors : instance based approach (save data
rather than parameters)

m In practice: no right way to choose the kernel, cross-validation for the
hyperparameters

m In practice: small to moderate datasets

Classification Kernel Machines F. Pascal 27 /78



Today's Lecture

Il. Introduction to clustering



Clustering: An Unsupervised Approach

m Extract homogeneous meaningful or useful categories from the data
m Discover/learn how the data is organized, natural structure

m No ground-truth outputs for training : unsupervised

Objectives
Understanding: Biology and medicine, finance, text mining, web, ...

Utility: Use cluster characteristics instead of the original data (dimension
reduction, regression of high-dimensional data, ...)

The labels are unknown!

Introduction to clustering F. Pascal 28 / 78



Dimension reduction vs Clustering

Let X = (x1,...,xy) be a set of N training samples

Dimension reduction Clustering
m Project X € RV? onto Z e RN4 m Groupe similar samples x; into
with g<d clusters Cy
m Visualize, denoise, reduce m Based on a dissimilarity metric
computational cost, ... 2(C, %)
(L} (i
N X N||Z

Introduction to clustering F. Pascal
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Clustering Applications

Market segmentation
m x: purchase history
m C;: market segments

Medical image segmentation

m x: image pixels, voxels

m Ci: blood, muscle, tumor, ...

Text mining
m X text, e-mails, ...

m C;: folders, themes, ...

Introduction to clustering F. Pascal 30 /78



Key Questions on Clustering

m Types of clustering 7

m How to characterize a cluster ?

m How to define similarity or dissimilarity between samples 7
m The real/optimal number of clusters ?

m What algorithms can we use and when ?

m How to evaluate a clustering result 7 (subjectivity)

Introduction to clustering F. Pascal 31/78
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[11. Reminders on Clustering



Today's Lecture

[11. Reminders on Clustering
m Types of methods and clusters



Types of clustering: Partitional vs Hierarchical

Partitional Hierarchical
m Division into non-overlapping m Clusters can have sub-clusters
subsets m Set of nested clusters,
m Each data point is in exactly organized as a tree
one subset

Q@

@ e o o
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Types of Clusters

m \Vell-separated: Any point in a cluster is closer (or more similar) to
every other point in the cluster than to any point not in the cluster.

m Prototype-Based: an object in a cluster is closer (more similar) to the
“center” of a cluster, than to the center of any other cluster —
Assumptions about shape

o Center = centroid (average) or medoid (most representative)

m Density-based: dense region of points, which is separated by
low-density regions, from other regions of high density. Used when the
clusters are irregular or intertwined, and when noise and outliers are
present — |s data driven

m Others... graph-based...

Reminders on Clustering Types of methods and clusters F. Pascal 33 /78



Distinctions between sets of clusters

m Exclusive vs non-exclusive (overlapping): separate clusters vs points
may belong to more than one cluster

m Fuzzy vs non-fuzzy: each observation x; belongs to every cluster 6
with a given weight wy € [0,1] and Zlk(=1 wy =1 (Similar to probabilistic
clustering).

m Partial vs Complete: all data are clustered vs there may be
non-clustered data, e.g., outliers, noise, “uninteresting background"...

m Homogeneous vs Heterogeneous: Clusters with # size, shape, density...

Reminders on Clustering Types of methods and clusters F. Pascal 34 /78



Today's Lecture

[11. Reminders on Clustering

m Distance and Dissimilarity



Dissimilarity Measures
Dissimilarity is a function of the pair (x,y): 2:ExE—R" s.t
2x,)=23,x)=0 and D(x,x)=0VxekE

Distance is a dissimilarity measure that satisfies also
2(x,))=0 < x=y
2(x,)) <D (x,2) +D(z,y) (metric)

Common distances

1
m Minkowski: 2(x,y) = (Z]‘.izl |xj — y;19)
(9=2 — Euclidian distance, g=1 —: Manhattan distance )

m Mahalanobis: 2(x,y) = [(x—y)TZ_l(X—J’)]%

m Hamming: number of indexes where the 2 vectors differ

Reminders on Clustering Distance and Dissimilarity F. Pascal 35 /78



Minimum : 2(6;,6))= min  D(x,y)

X€ ivyecgj

Maximum : D(6;,6)) = gax 2(x,Y)

XEG;,YEEC)

Group Average : D(€»€)=——)_ Y 2&Y)
ln]xe%,yég]

Between Centroids D D(6;,6)) = D(mj, my),
with m; = — Z x

nlxe‘ﬁ,

T

L
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Dissimilarity Between Clusters (2/2)

Objective function distances

) 2 n; n;
m Ward distance: 2(%;%)) = 9 (mj, mj)
n;+ n;

m WPGMA (Weighted Pair Group Method with Arithmetic Mean)
recursive distance

D(EC},€)+D (€7, 6)
2

D6, 6) ==

where 6,7 are the child clusters of €;

Reminders on Clustering Distance and Dissimilarity F. Pascal 37 /78



Today's Lecture

[11. Reminders on Clustering

m Clustering Quality



What makes a good clustering ?

1
Centroid: m;j=— ) x
nix€<€i

Inertia: J; = Y xew, D% (xg, my)

(low J; corresponds to a smaller dispersion of points around m;.)

Within distance: Jiy = ¥; Y xe, 22 (xg, mi) = ¥ J;
m Between distance: Jj, = Y ; n;2°(mj, m)

1
where m is the sample mean m=—-Yx
n

m Performance measures: accuracy (when ground truth is known), ARI
(Adjusted Rand Index), AMI (Adjusted Mutual Information)...

A good clustering...

Minimizes the within distance J,, and maximizes the between distance Jj

Reminders on Clustering Clustering Quality F. Pascal 38 /78



Illustrative example

Cluster noisy data for a segmentation application in image processing

Objective J

(a) Tree data (b) Noisy tree data

Figure: Data on which the clustering algorithms are evaluated

Should be easy...
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Today's Lecture

IV. Clustering algorithms
m K-means



K-means
It is a prototype-based clustering technique.
Notations: 7 unlabelled data vectors of R denoted as x = (xy, ..., X;;) which
should be split into K classes €, ..., €k, with Card(6}) = ng, i ng = n.
Centroid of €6} is denoted my. =

Optimal solution
Number of partitions of x into K subsets:

1 K
P(n,K) = EZ K" (~1)K Rk for K< n
* k=0

" K!
Where CK = m

Example: P(100,5) =~ 1058 1111

Clustering algorithms K-means F. Pascal 40 / 78



K-means algorithm

Partitional clustering approach where K of clusters must be specified
Each observation is assigned to the cluster with the closest centroid
Minimizes the intra-cluster variance V=Y ¥ ix.e, nlkllx,-— myl |2
The basic algorithm is very simple

Algorithm 1 K-means algorithm

Input : x observation vectors and the number K of clusters

Output : z=(z1,...,zn), the labels of (x1,...,xn)

Initialization : Randomly select K points as the initial centroids

Until convergence (define a criterion, e.g. error, changes, centroids estima-
tion...) Repeat

Form K clusters by assigning x; to the closest centroid my
Cr=1{x;, Vie{l,..,n} | dx;my) <dXx;— mj) ,Vjed(l,.., K} }
Recompute the centroids
Vke{l,..K}:mp=+ ¥ x;.

n,
. X;EG
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K-means drawbacks and alternatives

K-means is simple but ...
m Solution depends on initialization
m Need to know K in advance
m Can’t handle noise or outliers : non-robust
]

Fails with clusters of non-convex shapes

Several alternatives
m K-means++: Seeding algorithm to initialize clusters with centroids
“spread-out” throughout the data
m K-medoids: To address the robustness aspects

m Kernel K-means: For overcoming the convex shape

m Many others ...

Clustering algorithms K-means F. Pascal 42 / 78



Correct initilization
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Correct initilization
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Bad initialization

Iteration 1 Iteration 2
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Results on the data set

K.means : 1 K.means : j:
5 5
45 a5
4 4
35 35
3 3
25 25
100 100
2 2
120 120
15 15
140 140
! !
20 40 60 80 100 120 140 20 40 60 80 100 120 140
(a) K-means++ (b) “Clusters

Figure: Clustering obtained with two different initialization techniques

Comments...
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Today's Lecture

IV. Clustering algorithms

m Hierarchical clustering



Hierarchical clustering Principles

m Produces a set of nested clusters organized as a hierarchical tree —
bypass choice of K

m Can be visualized as a dendrogram: a tree like diagram that records
the sequences of merges or splits with branch length corresponding to
cluster distance

Two approaches

Agglomerative: Bottom-up - Start with as much clusters as
observations and iteratively aggregate observations using a given
distance

Divise: Top-down - Start with one cluster containing all observations
and iteratively split into smaller clusters

Clustering algorithms Hierarchical clustering F. Pascal 47 | 78



Hierarchical Clustering: The tree

P
P1 P2 P3 P4

(a) Hierarchical Clusters (b) Dendrogram

We can see that ...

m Each node (cluster) in the tree (except the leaf nodes) is the union of
its children (subclusters)

m The root of the tree is the cluster containing all objects.

Clustering algorithms Hierarchical clustering F. Pascal 48 | 78



Hierarchical clustering example

020
0.15¢
0.1
0.05}
0
1 5 4

Figure: General principles
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Inter-Cluster distance

Most popular clustering techniques

Algorithm 2 Agglomerative hierarchical clustering

Input : x observation vectors and “cutting” threshold A

Output : all merged clusters set (at each iteration) and “inter-cluster”
distances (between clusters)

Initialization : n = sample size = number of clusters.

While Number of clusters > 1
Compute distances between clusters

Merged the two nearest clusters

Clustering algorithms Hierarchical clustering F. Pascal 50 / 78



Inter-Cluster distances
m MIN — Single Linkage: d(€;,%;)= min d(xy)

XEG;,YEGC]
m MAX — Complete Linkage: d(%;,%6))= max d(x,y)
XEG;, yE‘gj

Group Average — Average Linkage: d(6;,6)) =

Z Y dxy)

L T X€€,yeE;
m Between centroid — Centroid Linkage: d(€;,€6)) = d(m;, m;), with

=—ZX

nlxe%
Objective function — Objective Linkage:

. 2 n; n;
» Ward distance d(6;,%6)) = d(m;, m))
ni+n;
n WPGMA (Weighted Pair Group Method with Arithmetic Mean)
o A6}, 6) + d(6?,6)
recursive distance d(6;,6)) == 5 where
<€l.1,<€l.2 are the child clusters of €;
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Different distances = different results

(b) MAX

Clustering algorithms Hierarchical clustering F. Pascal 52 / 78



Different distances = different results

Figure: Group average

Ward: very similar results.
m MIN : can handle non-elliptical shape BUT sensitive to outliers, noise...
m MAX: less sensitive to outliers BUT can break large clusters and
biased towards globular clusters
m Average: don't break large clusters BUT biased towards globular
clusters
m Ward: Hierarchical analogue of K-means

Clustering algorithms Hierarchical clustering F. Pascal 53 / 78



Results on the data set - Single Linkage

segRGBIR, seuil = 51.5278

(a) Noisy Tree

100 100;
%0 %0
80

80

w -
"
40 =
20 774/77
10 . (Y, ¢
o 1420 2 119 31511132224 416 512 6 71018272117 8 9232025282630 Zt’D 5 10 15 20 25 30
(c) Dendrogram (d) Cutting Threshold
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Results on the data set - Compblete Linkage

Clustering algorithms

(e) Noisy Tree

15

0
1203019 214 31611132123 416 512 6 8 9 710182017222724262528

(g) Dendrogram

segRGBIR, seuil = 72.1588 "

(h) Cutting Threshold

F. Pascal

Hierarchical clustering
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Results on the data set - Average Linkage

segRGBIR, seuil = 63.8515

— 7
6
5
q .|A
3
2

(i) Noisy Tree (j) Average Linkage
250 20
- -
150 150
/
/
100 100 //
W |
50 50 ‘_//'/
o 329301511132123 416 119 214 512 6 8 9 710182017222724262528 DD 5 10 15 20 25 30
(k) Dendrogram (1) Cutting Threshold
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Results on the data set - Ward Linkage

segRGBIR, seuil = 595.0307

- 7
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5

.|A
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2
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(m) Noisy Tree (n) Average Linkage
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28

(o) Dendrogram (p) Cutting Threshold
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Results on the data set - WPGMA Linkage

segRGBIR, seuil = 62.2643

— 8
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i I 6

5

4

!

2

1

(a) Noisy Tree (r) Average Linkage
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(s) Dendrogram (t) Cutting Threshold
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Hierarchical clustering - Pros and cons

m Pros

m Simple and intuitive

m Unsupervised: no a priori assumptions

m Interpretable: number of clusters, used distance...
m Cons

= Computational cost: single linkage (O(7®),0(7?) or O(n)),
complete linkage (O(n3) or O(n?)), average (O(n?)), Ward's
method (O(n?)), ...
Cutting threshold: challenging choicel!
Lack of robustness: sensitivity to outliers and noise
No global objective function to optimize
Handle heterogeneous data (clusters of # size, non-globular
shapes...)
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Today's Lecture

IV. Clustering algorithms

m DBSCAN



DBSCAN : A Density-based Algorithm

For an observation x;, find a sufficiently (IVlinPts) large neighborhood (<),
then

m aggregate the new observations (neighbors) to the cluster €y of x;,

m else x; is an isolated observation (outlier).

This results in three types of points called core, border, or noise points,

Key parameters
m ¢ and e-neighborhood: A;(x;) = {z|d(x;,z) < €}

m MinPts: nyi, for defining core points x; s.t. card(A;(X;) = Bmin
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DBSCAN: Three Types of Points

Core point: is near the center of a cluster/has MinPts neighbors

Border point: is not a core point, but is in the neighborhood of a
core point

Noise point: is any point that is neither a core nor a border point

MinPts =7 border point core point

noise point
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DBSCAN: Influence of ¢

The parameter ¢ represents the minimum distance between two

non-neighboring points:

— A very large € causes all possible clusters to merge into one cluster

— A very small ¢ leads to a lot of noise, points are not assigned to

clusters

eps = 0.33

eps = 0.25

3

3
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DBSCAN: So how do we choose ¢ ?

m Depends on the distance between the data points

m The Elbow trick on the k-NN plot is commonly used in practice (k is
MinPts!):
— x-axis all the points
— y-axis the average distance of each point to their its k-NN

B Remains a difficult choicel!

0 200 400 600 800 1000
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DBSCAN algorithm

Algorithm 3 DBSCAN algorithm
Input: x observations, €, MinPts
Output: Z, labels of x

For all x;

Verify that x; has not been visited by the algo, else x; is marked “as
visited”

Identify the e-neighborhood of x;, A;(x;).

If card(A;(X;)) < Bynin, then mark P as an isolated point.

Else Create a cluster 6 containing x; and run
class__extension(6x,Xi, €, lmin)
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Cluster extension

Algorithm 4 Extension class function

Input: Cluster 6} to increase, observation x; of €, Rmin, €.
Output : Z labels of observations in A, (x;)

Forall x;j,i# j of A:(x;)
Verify that x; has not been visited by the algo, else x; is marked “as
visited”
Identify the e-neighborhood of x;j, A% (x;).

If card (A (X)) = numin
Ne(Xi) = Ne(Xi) + N (X))

If x; is not clustered, add to .
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lllustration of DBSCAN principles

Point du
centre

Point du

bord

Point non
classé
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Figure: Clustering results obtained with DBSCAN algorithm.
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Results on the data set - DBSCAN

DBSCAN : epsilon = 13.7929, MinPts = 4 DBSCAN : epsilon = 44.9123, MinPts = 256

25 5
45
20 4
35
15 3
25
10 2
15
5 A
05
0 0

(a) MinPts = 4 ) MinPts = 256

Figure: Influence of MinPts and ¢

Discussion: €, number of clusters, MinPts...

m Pros: Resistant to Noise, can handle clusters of different shapes and
sizes

m Cons: Interpretable parameters (estimation), Varying densities,
High-dimensional data
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KMeans

Algorithms comparison

DBSCAN

SpectralClustering

Meanshift
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Figure: From Scikits learn: https://ogrisel.github.io/scikit-learn.org/
sklearn-tutorial/modules/clustering.html
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Today's Lecture

IV. Clustering algorithms
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HDBSCAN

Key ldea: Convert DBSCAN into a hierarchical clustering algorithm and
— bypass the choice of the e-parameter!

— scan all possible solutions with all values of ¢

Main steps:
Transform the space according to the density/sparsity
Build the minimum spanning tree of the distance weighted graph
Construct a cluster hierarchy of connected components.
Condense the cluster hierarchy based on minimum cluster size.
Extract the stable clusters from the condensed tree.
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HDBSCAN

Key ldea: Convert DBSCAN into a hierarchical clustering algorithm and
— bypass the choice of the e-parameter!

— scan all possible solutions with all values of ¢

Main steps:
Transform the space according to the density/sparsity
Build the minimum spanning tree of the distance weighted graph
Construct a cluster hierarchy of connected components.
Condense the cluster hierarchy based on minimum cluster size.
Extract the stable clusters from the condensed tree.

Easier to understand with an example!

Campello, R.J., Moulavi, D. and Sander, J., “Density-based clustering based on
hierarchical density estimates”. In Pacific-Asia conference on knowledge discovery and
data mining (pp. 160-172). Springer, Berlin, Heidelberg, April 2013.
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HDBSCAN: lllustrative example
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Step 1: Transform The Space

m Goal: Prepare the data for a single linkage clustering (real data is
noisy and single linkage is not robust!)

m Key idea: Push sparse points away from the rest of the data before
clustering

m The islands/sea analogy — Make sea points more distant from each
other and from the /and

How do we evaluate density ?

m Need an inexpensive density estimate = k-NN is the simplest

m Call it the core distance for parameters k and point x;, coreg(x;)
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Step 1: Transform The Space

m Goal: Prepare the data for a single linkage clustering (real data is
noisy and single linkage is not robust!)

m Key idea: Push sparse points away from the rest of the data before
clustering

m The islands/sea analogy — Make sea points more distant from each
other and from the /and

How do we evaluate density ?
m Need an inexpensive density estimate = k-NN is the simplest

m Call it the core distance for parameters k and point x;, coreg(x;)

And how do we connect points now ?
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Step 1 : Mutual Reachability Distance

A new distance metric is defined as
Amreach-kXi,X;) = max(core(x;), corex (X)), d(x;,X;)),

Meaning that we want to connect points that are
Close enough to each other : d(x;,x;)

In a dense enough region : corey(x;)
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Step 2 : The Minimum Spanning Tree

m Goal: Prepare the data for clustering using d;reach
m Key ideas:
m Construct a graph that connects all points
m Start disconnecting them by lowering a threshold (sea level drops)
m Points are the vertices and the edges are weighted by d;reach
m 12 possible edges — the minimum spanning tree

Algorithms from graph theory

t

Mutual reachability distance

m Prim’s algorithm . ' ~
m Dual Tree Boruvka @

v

Clustering algorithms HDBSCAN F. Pascal 73 /78



Step 3: Build the cluster hierarchy

Clusters emerge progressively as we lower the dyreqcn threshold (— sort the
edges and start single linkage)
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Step 4 : Condense the cluster tree

Get rid of levels that resulted in noise : nbr of points < Gy,
(clusters are shrinking # splitting)

100
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Extract the clusters

Key idea: Choose clusters that persist (live for a long time) and that are
large — maximize a stability criterion
(flat clustering: can't select descendance of a selected cluster!)
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Results
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HDBSCAN: Summary
Implementation: The 5 main steps
Compute coreg(x;) using MinPts — Measure density
Transform the space: use new metric dyreach
Construct a minimum spanning tree

Simplify/condense the tree using Cmin

Extract final clustering results

In conclusion: Two parameters (MinPts and Cyin), varying densities, robust to
outliers, interpretability...

v
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Transform the space: use new metric dyreach

— Robustness to noise!
Construct a minimum spanning tree

— Lower computational cost
Simplify/condense the tree using Cmin

— Preprocessing for the next step

Extract final clustering results
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HDBSCAN: Summary
Implementation: The 5 main steps

Compute coreg(x;) using MinPts — Measure density
Transform the space: use new metric dyreach

— Robustness to noise!
Construct a minimum spanning tree

— Lower computational cost
Simplify/condense the tree using Cmin

— Preprocessing for the next step
Extract final clustering results

— Maximize cluster stability

In conclusion: Two parameters (MinPts and Cyin), varying densities, robust to
outliers, interpretability...

v
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