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Partitioning and hierarchical methods are designed to find spherical-shaped clusters.
They have difficulty finding clusters of arbitrary shape such as the “S” shape and oval
clusters in Figure 10.13. Given such data, they would likely inaccurately identify convex
regions, where noise or outliers are included in the clusters.

To find clusters of arbitrary shape, alternatively, we can model clusters as dense
regions in the data space, separated by sparse regions. This is the main strategy behind
density-based clustering methods, which can discover clusters of nonspherical shape.
In this section, you will learn the basic techniques of density-based clustering by
studying three representative methods, namely, DBSCAN (Section 10.4.1), OPTICS
(Section 10.4.2), and DENCLUE (Section 10.4.3).

10.4.1 DBSCAN: Density-Based Clustering Based on Connected
Regions with High Density
“How can we find dense regions in density-based clustering?” The density of an object o
can be measured by the number of objects close to o. DBSCAN (Density-Based Spatial
Clustering of Applications with Noise) finds core objects, that is, objects that have dense
neighborhoods. It connects core objects and their neighborhoods to form dense regions
as clusters.

“How does DBSCAN quantify the neighborhood of an object?” A user-specified para-
meter ✏ > 0 is used to specify the radius of a neighborhood we consider for every object.
The ✏-neighborhood of an object o is the space within a radius ✏ centered at o.

Due to the fixed neighborhood size parameterized by ✏, the density of a neighbor-
hood can be measured simply by the number of objects in the neighborhood. To deter-
mine whether a neighborhood is dense or not, DBSCAN uses another user-specified

Figure 10.13 Clusters of arbitrary shape.
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parameter, MinPts, which specifies the density threshold of dense regions. An object is
a core object if the ✏-neighborhood of the object contains at least MinPts objects. Core
objects are the pillars of dense regions.

Given a set, D, of objects, we can identify all core objects with respect to the given
parameters, ✏ and MinPts. The clustering task is therein reduced to using core objects
and their neighborhoods to form dense regions, where the dense regions are clusters.
For a core object q and an object p, we say that p is directly density-reachable from q
(with respect to ✏ and MinPts) if p is within the ✏-neighborhood of q. Clearly, an object
p is directly density-reachable from another object q if and only if q is a core object and
p is in the ✏-neighborhood of q. Using the directly density-reachable relation, a core
object can “bring” all objects from its ✏-neighborhood into a dense region.

“How can we assemble a large dense region using small dense regions centered by core
objects?” In DBSCAN, p is density-reachable from q (with respect to ✏ and MinPts in
D) if there is a chain of objects p1, . . . ,pn, such that p1 = q, pn = p, and pi+1 is directly
density-reachable from pi with respect to ✏ and MinPts, for 1  i  n, pi 2 D. Note that
density-reachability is not an equivalence relation because it is not symmetric. If both o1
and o2 are core objects and o1 is density-reachable from o2, then o2 is density-reachable
from o1. However, if o2 is a core object but o1 is not, then o1 may be density-reachable
from o2, but not vice versa.

To connect core objects as well as their neighbors in a dense region, DBSCAN uses
the notion of density-connectedness. Two objects p1,p2 2 D are density-connected with
respect to ✏ and MinPts if there is an object q 2 D such that both p1 and p2 are density-
reachable from q with respect to ✏ and MinPts. Unlike density-reachability, density-
connectedness is an equivalence relation. It is easy to show that, for objects o1, o2, and
o3, if o1 and o2 are density-connected, and o2 and o3 are density-connected, then so are
o1 and o3.

Example 10.7 Density-reachability and density-connectivity. Consider Figure 10.14 for a given ✏

represented by the radius of the circles, and, say, let MinPts = 3.
Of the labeled points, m,p,o,r are core objects because each is in an ✏-neighborhood

containing at least three points. Object q is directly density-reachable from m. Object m
is directly density-reachable from p and vice versa.

Object q is (indirectly) density-reachable from p because q is directly density-
reachable from m and m is directly density-reachable from p. However, p is not density-
reachable from q because q is not a core object. Similarly, r and s are density-reachable
from o and o is density-reachable from r. Thus, o, r, and s are all density-connected.

We can use the closure of density-connectedness to find connected dense regions as
clusters. Each closed set is a density-based cluster. A subset C ✓ D is a cluster if (1)
for any two objects o1,o2 2 C, o1 and o2 are density-connected; and (2) there does not
exist an object o 2 C and another object o0 2 (D � C) such that o and o0 are density-
connected.
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Figure 10.14 Density-reachability and density-connectivity in density-based clustering. Source: Based on
Ester, Kriegel, Sander, and Xu [EKSX96].

“How does DBSCAN find clusters?” Initially, all objects in a given data set D are
marked as “unvisited.” DBSCAN randomly selects an unvisited object p, marks p as
“visited,” and checks whether the ✏-neighborhood of p contains at least MinPts objects.
If not, p is marked as a noise point. Otherwise, a new cluster C is created for p, and all
the objects in the ✏-neighborhood of p are added to a candidate set, N . DBSCAN iter-
atively adds to C those objects in N that do not belong to any cluster. In this process,
for an object p0 in N that carries the label “unvisited,” DBSCAN marks it as “visited” and
checks its ✏-neighborhood. If the ✏-neighborhood of p0 has at least MinPts objects, those
objects in the ✏-neighborhood of p0 are added to N . DBSCAN continues adding objects
to C until C can no longer be expanded, that is, N is empty. At this time, cluster C is
completed, and thus is output.

To find the next cluster, DBSCAN randomly selects an unvisited object from the
remaining ones. The clustering process continues until all objects are visited. The
pseudocode of the DBSCAN algorithm is given in Figure 10.15.

If a spatial index is used, the computational complexity of DBSCAN is O(n logn),
where n is the number of database objects. Otherwise, the complexity is O(n2). With
appropriate settings of the user-defined parameters, ✏ and MinPts, the algorithm is
effective in finding arbitrary-shaped clusters.

10.4.2 OPTICS: Ordering Points to Identify
the Clustering Structure
Although DBSCAN can cluster objects given input parameters such as ✏ (the maxi-
mum radius of a neighborhood) and MinPts (the minimum number of points required
in the neighborhood of a core object), it encumbers users with the responsibility of
selecting parameter values that will lead to the discovery of acceptable clusters. This is
a problem associated with many other clustering algorithms. Such parameter settings
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Algorithm: DBSCAN: a density-based clustering algorithm.

Input:

D: a data set containing n objects,

✏: the radius parameter, and

MinPts: the neighborhood density threshold.

Output: A set of density-based clusters.

Method:

(1) mark all objects as unvisited;
(2) do
(3) randomly select an unvisited object p;
(4) mark p as visited;
(5) if the ✏-neighborhood of p has at least MinPts objects
(6) create a new cluster C, and add p to C;
(7) let N be the set of objects in the ✏-neighborhood of p;
(8) for each point p0 in N
(9) if p0 is unvisited
(10) mark p0 as visited;
(11) if the ✏-neighborhood of p0 has at least MinPts points,

add those points to N ;
(12) if p0 is not yet a member of any cluster, add p0 to C;
(13) end for
(14) output C;
(15) else mark p as noise;
(16) until no object is unvisited;

Figure 10.15 DBSCAN algorithm.

are usually empirically set and difficult to determine, especially for real-world, high-
dimensional data sets. Most algorithms are sensitive to these parameter values: Slightly
different settings may lead to very different clusterings of the data. Moreover, real-world,
high-dimensional data sets often have very skewed distributions such that their intrin-
sic clustering structure may not be well characterized by a single set of global density
parameters.

Note that density-based clusters are monotonic with respect to the neighborhood
threshold. That is, in DBSCAN, for a fixed MinPts value and two neighborhood thresh-
olds, ✏1 < ✏2, a cluster C with respect to ✏1 and MinPts must be a subset of a cluster
C0 with respect to ✏2 and MinPts. This means that if two objects are in a density-based
cluster, they must also be in a cluster with a lower density requirement.

To overcome the difficulty in using one set of global parameters in clustering analy-
sis, a cluster analysis method called OPTICS was proposed. OPTICS does not explicitly
produce a data set clustering. Instead, it outputs a cluster ordering. This is a linear list
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of all objects under analysis and represents the density-based clustering structure of the
data. Objects in a denser cluster are listed closer to each other in the cluster ordering.
This ordering is equivalent to density-based clustering obtained from a wide range of
parameter settings. Thus, OPTICS does not require the user to provide a specific density
threshold. The cluster ordering can be used to extract basic clustering information (e.g.,
cluster centers, or arbitrary-shaped clusters), derive the intrinsic clustering structure, as
well as provide a visualization of the clustering.

To construct the different clusterings simultaneously, the objects are processed in a
specific order. This order selects an object that is density-reachable with respect to the
lowest ✏ value so that clusters with higher density (lower ✏) will be finished first. Based
on this idea, OPTICS needs two important pieces of information per object:

The core-distance of an object p is the smallest value ✏0 such that the
✏0-neighborhood of p has at least MinPts objects. That is, ✏0 is the minimum dis-
tance threshold that makes p a core object. If p is not a core object with respect to ✏

and MinPts, the core-distance of p is undefined.

The reachability-distance to object p from q is the minimum radius value that makes
p density-reachable from q. According to the definition of density-reachability, q
has to be a core object and p must be in the neighborhood of q. Therefore, the
reachability-distance from q to p is max{core-distance(q), dist(p, q)}. If q is not a
core object with respect to ✏ and MinPts, the reachability-distance to p from q is
undefined.

An object p may be directly reachable from multiple core objects. Therefore, p
may have multiple reachability-distances with respect to different core objects. The
smallest reachability-distance of p is of particular interest because it gives the shortest
path for which p is connected to a dense cluster.

Example 10.8 Core-distance and reachability-distance. Figure 10.16 illustrates the concepts of core-
distance and reachability-distance. Suppose that ✏ = 6 mm and MinPts = 5. The core-
distance of p is the distance, ✏0, between p and the fourth closest data object from p.
The reachability-distance of q1 from p is the core-distance of p (i.e., ✏0 = 3mm) because
this is greater than the Euclidean distance from p to q1. The reachability-distance of q2
with respect to p is the Euclidean distance from p to q2 because this is greater than the
core-distance of p.

OPTICS computes an ordering of all objects in a given database and, for each object
in the database, stores the core-distance and a suitable reachability-distance. OPTICS
maintains a list called OrderSeeds to generate the output ordering. Objects in Order-
Seeds are sorted by the reachability-distance from their respective closest core objects,
that is, by the smallest reachability-distance of each object.

OPTICS begins with an arbitrary object from the input database as the current
object, p. It retrieves the ✏-neighborhood of p, determines the core-distance, and sets
the reachability-distance to undefined. The current object, p, is then written to output.
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Figure 10.16 OPTICS terminology. Source: Based on Ankerst, Breunig, Kriegel, and Sander [ABKS99].

If p is not a core object, OPTICS simply moves on to the next object in the OrderSeeds
list (or the input database if OrderSeeds is empty). If p is a core object, then for each
object, q, in the ✏-neighborhood of p, OPTICS updates its reachability-distance from p
and inserts q into OrderSeeds if q has not yet been processed. The iteration continues
until the input is fully consumed and OrderSeeds is empty.

A data set’s cluster ordering can be represented graphically, which helps to visual-
ize and understand the clustering structure in a data set. For example, Figure 10.17 is
the reachability plot for a simple 2-D data set, which presents a general overview of
how the data are structured and clustered. The data objects are plotted in the cluster-
ing order (horizontal axis) together with their respective reachability-distances (vertical
axis). The three Gaussian “bumps” in the plot reflect three clusters in the data set. Meth-
ods have also been developed for viewing clustering structures of high-dimensional data
at various levels of detail.

The structure of the OPTICS algorithm is very similar to that of DBSCAN. Conse-
quently, the two algorithms have the same time complexity. The complexity is O(n logn)

if a spatial index is used, and O(n2) otherwise, where n is the number of objects.

10.4.3 DENCLUE: Clustering Based on Density
Distribution Functions
Density estimation is a core issue in density-based clustering methods. DENCLUE
(DENsity-based CLUstEring) is a clustering method based on a set of density distribu-
tion functions. We first give some background on density estimation, and then describe
the DENCLUE algorithm.

In probability and statistics, density estimation is the estimation of an unobservable
underlying probability density function based on a set of observed data. In the context
of density-based clustering, the unobservable underlying probability density function
is the true distribution of the population of all possible objects to be analyzed. The
observed data set is regarded as a random sample from that population.
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Figure 10.17 Cluster ordering in OPTICS. Source: Adapted from Ankerst, Breunig, Kriegel, and Sander
[ABKS99].
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Figure 10.18 The subtlety in density estimation in DBSCAN and OPTICS: Increasing the neighborhood
radius slightly from ✏1 to ✏2 results in a much higher density.

In DBSCAN and OPTICS, density is calculated by counting the number of objects in
a neighborhood defined by a radius parameter, ✏. Such density estimates can be highly
sensitive to the radius value used. For example, in Figure 10.18, the density changes
significantly as the radius increases by a small amount.

To overcome this problem, kernel density estimation can be used, which is a
nonparametric density estimation approach from statistics. The general idea behind
kernel density estimation is simple. We treat an observed object as an indicator of
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high-probability density in the surrounding region. The probability density at a point
depends on the distances from this point to the observed objects.

Formally, let x1, . . . ,xn be an independent and identically distributed sample of a
random variable f . The kernel density approximation of the probability density function is

f̂h(x) =
1

nh

nX
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x � xi

h

◆
, (10.21)

where K() is a kernel and h is the bandwidth serving as a smoothing parameter. A ker-
nel can be regarded as a function modeling the influence of a sample point within its
neighborhood. Technically, a kernel K() is a non-negative real-valued integrable func-
tion that should satisfy two requirements:

R
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DENCLUE uses a Gaussian kernel to estimate density based on the given set of objects
to be clustered. A point x⇤ is called a density attractor if it is a local maximum of the
estimated density function. To avoid trivial local maximum points, DENCLUE uses a
noise threshold, ⇠ , and only considers those density attractors x⇤ such that f̂ (x⇤) � ⇠ .
These nontrivial density attractors are the centers of clusters.

Objects under analysis are assigned to clusters through density attractors using a step-
wise hill-climbing procedure. For an object, x, the hill-climbing procedure starts from
x and is guided by the gradient of the estimated density function. That is, the density
attractor for x is computed as

x0 = x

xj+1 = xj + �
r f̂ (xj)

|r f̂ (xj)|
, (10.23)

where � is a parameter to control the speed of convergence, and
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1
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. (10.24)

The hill-climbing procedure stops at step k > 0 if f̂ (xk+1) < f̂ (xk), and assigns x to the
density attractor x⇤ = xk. An object x is an outlier or noise if it converges in the hill-
climbing procedure to a local maximum x⇤ with f̂ (x⇤) < ⇠ .

A cluster in DENCLUE is a set of density attractors X and a set of input objects C
such that each object in C is assigned to a density attractor in X , and there exists a path
between every pair of density attractors where the density is above ⇠ . By using multiple
density attractors connected by paths, DENCLUE can find clusters of arbitrary shape.
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DENCLUE has several advantages. It can be regarded as a generalization of several
well-known clustering methods such as single-linkage approaches and DBSCAN. More-
over, DENCLUE is invariant against noise. The kernel density estimation can effectively
reduce the influence of noise by uniformly distributing noise into the input data.

10.5 Grid-Based Methods

The clustering methods discussed so far are data-driven—they partition the set of
objects and adapt to the distribution of the objects in the embedding space. Alterna-
tively, a grid-based clustering method takes a space-driven approach by partitioning
the embedding space into cells independent of the distribution of the input objects.

The grid-based clustering approach uses a multiresolution grid data structure. It
quantizes the object space into a finite number of cells that form a grid structure on
which all of the operations for clustering are performed. The main advantage of the
approach is its fast processing time, which is typically independent of the number of data
objects, yet dependent on only the number of cells in each dimension in the quantized
space.

In this section, we illustrate grid-based clustering using two typical examples. STING
(Section 10.5.1) explores statistical information stored in the grid cells. CLIQUE
(Section 10.5.2) represents a grid- and density-based approach for subspace clustering
in a high-dimensional data space.

10.5.1 STING: STatistical INformation Grid
STING is a grid-based multiresolution clustering technique in which the embedding
spatial area of the input objects is divided into rectangular cells. The space can be divided
in a hierarchical and recursive way. Several levels of such rectangular cells correspond to
different levels of resolution and form a hierarchical structure: Each cell at a high level
is partitioned to form a number of cells at the next lower level. Statistical information
regarding the attributes in each grid cell, such as the mean, maximum, and minimum
values, is precomputed and stored as statistical parameters. These statistical parameters
are useful for query processing and for other data analysis tasks.

Figure 10.19 shows a hierarchical structure for STING clustering. The statistical
parameters of higher-level cells can easily be computed from the parameters of the
lower-level cells. These parameters include the following: the attribute-independent
parameter, count ; and the attribute-dependent parameters, mean, stdev (standard devia-
tion), min (minimum), max (maximum), and the type of distribution that the attribute
value in the cell follows such as normal, uniform, exponential, or none (if the distribu-
tion is unknown). Here, the attribute is a selected measure for analysis such as price for
house objects. When the data are loaded into the database, the parameters count, mean,
stdev, min, and max of the bottom-level cells are calculated directly from the data. The
value of distribution may either be assigned by the user if the distribution type is known


