

Random forests: The first-choice method for every data analysis?

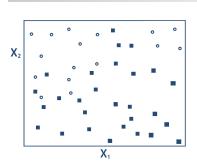
Marvin N. Wright

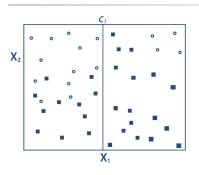
Leibniz Institute for Prevention Research & Epidemiology – BIPS

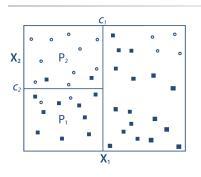
September 28, 2019

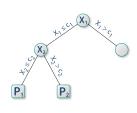
Outline

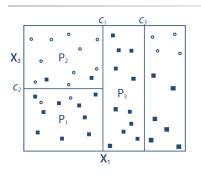
- 1. Introduction
- 2. Common Claims
- 3. Implementations in R
- 4. Discussion & Conclusion

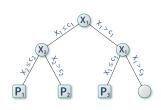


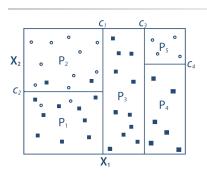


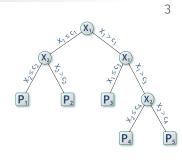


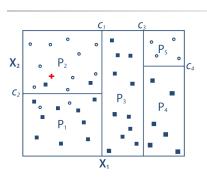


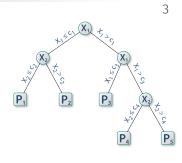


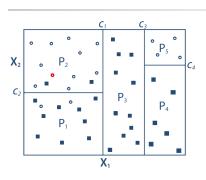


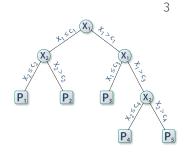


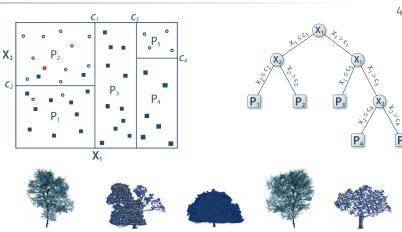


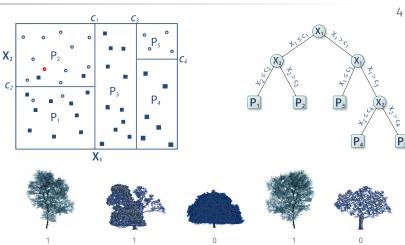


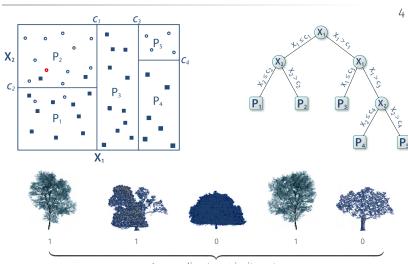












5

Step 1

Draw bootstrap sample or subsample

Step 2

Grow tree

Step 3

At each node, randomly select features (mtry value)

Step 4

Repeat steps 1-3, average over all trees

5

Step 1

Draw bootstrap sample or subsample

Step 2

Grow tree

Step 3

At each node, randomly select features (mtry value)

Step 4

Repeat steps 1-3, average over all trees

Random forests Tuning parameters

6

Number of trees

- Usual default: 500
- Use more trees for high dimensional datasets

mtry value

Number of features selected as splitting candidates in nodes

- Usual default: \sqrt{p} , where p = #features
- For large p use at least p/10

Terminal node size

Required number of observations in terminal nodes

- Determines tree size
- Typically small for classification, large for regression

Outline

- 1. Introduction
- 2. Common Claims
- 3. Implementations in R
- 4. Discussion & Conclusion

8

Claim 1: "works well without tuning"

8

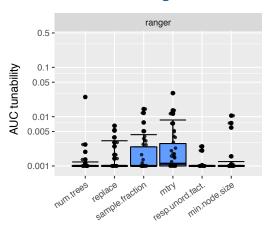
Claim 1: "works well without tuning"

"RF is the algorithm with the smallest tunability."

- Probst et al. 2019a

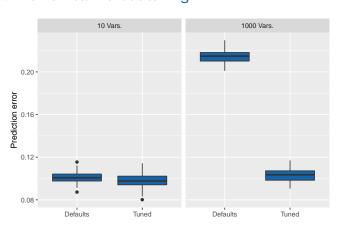
They compared ranger, glmnet, rpart, kknn, e1071::svm, xgboost.

Claim 1: "works well without tuning"



10

Claim 1: "works well without tuning"



✓ Works well without tuning

🗡 Exception: High dimensional data, low signal-to-noise ratio

12

Claim 2: "no need to scale or recode predictors"

12

Claim 2: "no need to scale or recode predictors"

Scaling

RF invariant to monotonic transformations

⇒ scale-invariant

Example

Original	4.6	4.7	4.9	5.0	5.1	5.4
Scaled	-1.2	-0.9	-0.2	0.2	0.5	1.6
Logarithm	1.53	1.55	1.59	1.61	1.63	1.69

13

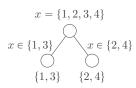
Claim 2: "no need to scale or recode predictors"

Categorical predictors

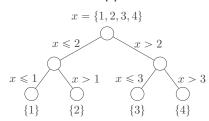
$$x = \{1, 2, 3, 4\}$$

Aim: Separate odd and even digits

Standard approach



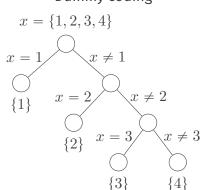
Naïve approach



14

Claim 2: "no need to scale or recode predictors"

Dummy coding



A priori ordering

$$x = \{1, 3, 2, 4\}$$

$$x \le 3$$

$$x > 3$$

$$\{1, 3\} \quad \{2, 4\}$$

Order by average outcome

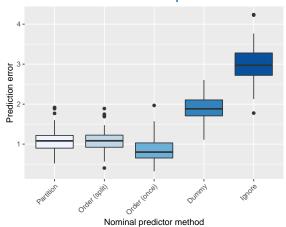
15

Claim 2: "no need to scale or recode predictors"

Standard approach works well only for few categories

- 4 numbers $\Rightarrow 2^{4-1} 1 = 7$ partitions
- 28 EU countries $\Rightarrow 2^{28-1} 1 = 1.34 \times 10^8$ partitions

Claim 2: "no need to scale or recode predictors"



✓ Works well without tuning

X Exception: High dimensional data, low signal-to-noise ratio

✓ No need to scale or recode predictors

18

Claim 3: "works well on high dimensional data"

18

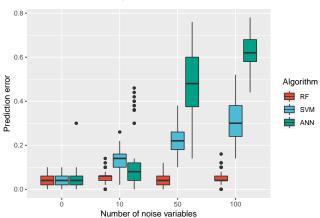
Claim 3: "works well on high dimensional data"

"[...] ability to deal with small sample sizes and high-dimensional feature spaces."

"the rate of **convergence depends only on** the number |S| of **strong variables**, not on the dimension p."

- Biau & Scornet 2016

Claim 3: "works well on high dimensional data"



20

Claim 3: "works well on high dimensional data"

Intrinsic variable selection

- Greedy splitting algorithm selects best splitting variable
- No fitting of parameters or weights for other variables

Fast computation

See second part

✓ Works well without tuning

X Exception: High dimensional data, low signal-to-noise ratio

✓ No need to scale or recode predictors

✓ Works well on high dimensional data

22

Claim 4: "cannot overfit"

22

Claim 4: "cannot overfit"

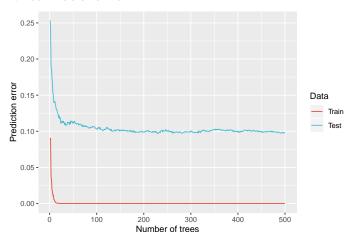
"[...] overfitting is not a problem."

"Random forests do not overfit as more trees are added."

- Breiman 2001

23

Claim 4: "cannot overfit"



24

Claim 4: "cannot overfit"

Definition 1

Adding trees does not hurt generalization error ✓

Definition 2

Training error is not smaller than generalization error 🗶

- ✓ Works well without tuning
 - X Exception: High dimensional data, low signal-to-noise ratio
- ✓ No need to scale or recode predictors
- ✓ Works well on high dimensional data
- Cannot overfit

26

Claim 5: "works for any kind of data"

26

Claim 5: "works for any kind of data" Extensions

- Random survival forests: Time-to-event outcomes
- Conditional inference forests: Avoid split variable selection bias
- Quantile regression forests: Quantile regression
- Transformation forests: Predict distributions
- Block forests: Multi-omics data
- Random forests for bounded outcomes
- Generalized random forests

And many more ...

27

Claim 5: "works for any kind of data"

Missing extensions

- Longitudinal data, e.g. repeated measurements
- Time series, e.g. register data
- Image, speech and natural language processing (next slide)

More?

28

Claim 5: "works for any kind of data"

"Methods like random forests regularly outperform neural networks in arbitrary domains, especially when the underlying data sizes are small and **no domain-specific insight has been used to arrange the architecture** of the underlying neural network."

— Wang et al. 2018

Image, speech and natural language processing data
Top benchmark results are all deep learning, mostly CNN's and
RNN's

✓ Works well without tuning

- X Exception: High dimensional data, low signal-to-noise ratio
- ✓ No need to scale or recode predictors
- ✓ Works well on high dimensional data
- Cannot overfit
- ✓ Works for almost any kind of data
 - X Exception: Image, speech and natural language processing

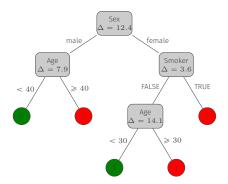
30

Claim 6: "is an interpretable model"

30

Claim 6: "is an interpretable model"

A single tree is interpretable



31

Claim 6: "is an interpretable model"

A random forest is **not** interpretable

32

Claim 6: "is an interpretable model"

Several variable importance measures available

- Gini/impurity importance: Sum of impurity measures
- Permutation importance: Permute variable, difference of prediction error
- Bias-corrected impurity importance: Difference of impurity importance to permuted version of variable
- Conditional variable importance: Conditional on other predictor variables
- Maximal subtree: Depth of first split on variable

✓ Works well without tuning

33

- X Exception: High dimensional data, low signal-to-noise ratio
- ✓ No need to scale or recode predictors
- ✓ Works well on high dimensional data
- Cannot overfit
- ✓ Works for almost any kind of data
 - X Exception: Image, speech and natural language processing
- X Is an interpretable model
 - ✓ Many variable importance measures available

34

Claim 7: "the statistical properties are well understood"

34

Claim 7: "the statistical properties are well understood"

Consistency

- Single tree not consistent
- RF consistent if $a_n/n \to 0$ and $a_n \to \infty$ (a_n/n : Subsampling rate)

Convergence rate

- Single trees slower than minimax rate
- RF achieves minimax rate. If more than 54% of variables have no effect, convergence rate faster than minimax

Asymptotic normality

- Single tree predictions asymptotically normally distributed
- RF predictions asymptotically normally distributed for subsampling

35

Claim 7: "the statistical properties are well understood"

Assumptions

- Subsampling, not standard bootstrap
- Limit on subsampling rate, e.g. $a_n/n \to 0$ and $a_n \to \infty$
- Random splitting, e.g. purely random forest, selecting variable and split completely randomly

✓ Works well without tuning

36

- X Exception: High dimensional data, low signal-to-noise ratio
- ✓ No need to scale or recode predictors
- ✓ Works well on high dimensional data
- Cannot overfit
- ✓ Works for almost any kind of data
 - X Exception: Image, speech and natural language processing
- X Is an interpretable model
 - ✓ Many variable importance measures available
- ✓ The statistical properties are well understood
 - 🗡 Assumptions might not hold with default settings

37

Claim 8: "the split variable selection is biased"

37

Claim 8: "the split variable selection is biased"

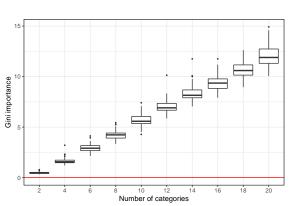
More possible split points for variables with more categories

Example

- Sex: 2 unique values
- Medication type: 5 unique values
- Age (in years): m unique values
- Biomarker: n unique values

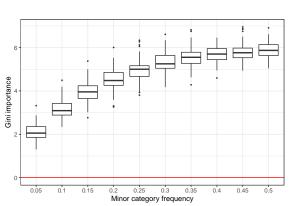
38

Claim 8: "the split variable selection is biased"



39

Claim 8: "the split variable selection is biased"



40

Claim 8: "the split variable selection is biased"

Solution 1

Randomized splitting rule

Solution 2

Conditional inference forests or maximally selected rank statistics

Solution 3

Bias-corrected variable importance

✓ Works well without tuning

41

- X Exception: High dimensional data, low signal-to-noise ratio
- ✓ No need to scale or recode predictors
- ✓ Works well on high dimensional data
- Cannot overfit
- ✓ Works for almost any kind of data
 - X Exception: Image, speech and natural language processing
- X Is an interpretable model
 - ✓ Many variable importance measures available
- ✓ The statistical properties are well understood
 - 🗡 Assumptions might not hold with default settings
- The split variable selection is biased → solved

42

Claim 9: "performance is not state of the art"

42

Claim 9: "performance is not state of the art"

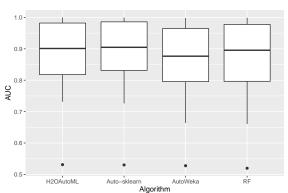
Gijsbers et al. 2019: Comparison of automated machine learning algorithms on 39 datasets with 4h time budget

Results

Algorithms	Average rank
H2OAutoML	1.5
Auto-sklearn	2.1
AutoWeka	3.4
RF	3.0

43

Claim 9: "performance is not state of the art"



Average runtime of random forest: 16.4 seconds

✓ Works well without tuning

44

- X Exception: High dimensional data, low signal-to-noise ratio
- ✓ No need to scale or recode predictors
- ✓ Works well on high dimensional data
- Cannot overfit
- ✓ Works for almost any kind of data
 - X Exception: Image, speech and natural language processing
- X Is an interpretable model
 - ✓ Many variable importance measures available
- ✓ The statistical properties are well understood
 - X Assumptions might not hold with default settings
- ✓ The split variable selection is biased \rightarrow solved
- Performance is not state of the art

45

Claim 10: "detects interactions"

45

Claim 10: "detects interactions"

"Random forests are generally **capable of capturing** gene-gene interactions, but current variable importance measures are **unable to detect** them as interactions."

"interactions are **masked by marginal effects** and interactions cannot be differentiated from marginal effects."

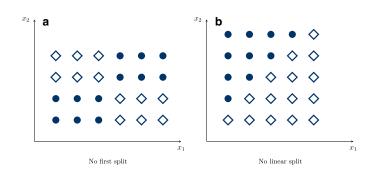
— Wright et al. 2016

"although it is able to take interactions into account, it does not specifically detect them."

- Schmalohr et al. 2018

46

Claim 10: "detects interactions"



47

Claim 10: "detects interactions"

Curse of dimensionality worse for interactions

Low probability to subsequently select all interacting variables in high dimensional data.

Example with p = 100000:

mtry =
$$\sqrt{p}$$
 = 316: $p_{2\text{Way}}$ = 0.00001, $p_{3\text{Way}}$ = 3 × 10⁻⁸ mtry = $p/2$ = 50000: $p_{2\text{Way}}$ = 0.25, $p_{3\text{Way}}$ = 0.125

Need marginal effect for first split

RF splitting only detects marginal effects

✓ Works well without tuning

48

X Exception: High dimensional data, low signal-to-noise ratio

- ✓ No need to scale or recode predictors
- ✓ Works well on high dimensional data
- Cannot overfit
- ✓ Works for almost any kind of data
 - Exception: Image, speech and natural language processing
- X Is an interpretable model
 - ✓ Many variable importance measures available
- ✓ The statistical properties are well understood
 - X Assumptions might not hold with default settings
- ✓ The split variable selection is biased \rightarrow solved
- Performance is not state of the art
 - Detects interactions

Outline

49

- 1. Introduction
- 2. Common Claims
- 3. Implementations in R
- 4. Discussion & Conclusion

RF Implementations in R

50

Original RF

- randomForest
- randomForestSRC
- Rborist
- ranger

Not available anymore

- bigrf
- Random Jungle

RF Implementations in R

51

Extensions

- party: Conditional inference forests
- partykit: Conditional inference forests, model-based recursive partitioning
- quantregForest: Quantile regression forests
- trtf: Transformation forests
- blockForest: Block forests
- grf: Generalized random forests

52

Low dimensional data

- 100,000 samples, 100 variables
- 1000 trees, mtry=10
- 12 CPU cores (except randomForest)

Package	Runtime (minutes)		Memory usage (GB)
	binary vars.	cont. vars.	
randomForest	31.53	42.65	9.37
randomForest (MC)	5.34	7.20	13.20
randomForestSRC	1.72	8.35	7.26
Rborist	5.42	4.93	2.74
ranger	1.17	9.31	1.27

Slower machine than in original paper

52

Low dimensional data

- 100,000 samples, 100 variables
- 1000 trees, mtry=10
- 12 CPU cores (except randomForest)

Package	Runtime (minutes)		Memory usage (GB)
	binary vars.	cont. vars.	
randomForest	31.53	42.65	9.37
<pre>randomForest (MC)</pre>	5.34	7.20	13.20
randomForestSRC	1.72	8.35	7.26
Rborist	5.42	4.93	2.74
ranger	1.17	9.31	1.27

Slower machine than in original paper

Runtime and memory usage

53

High dimensional data (genetic data)

- 10,000 samples, 150,000 variables (SNPs)
- 1000 trees, mtry=5000
- 12 CPU cores (except randomForest)

Package	Runtime (hours)	Memory usage (GB)
randomForest	93.04	52.73
randomForest(MC)	NA	>96
randomForestSRC	1.59	36.05
Rborist	NA	>96
ranger	1.19	17.71
ranger (GWAS mode)	0.35	0.13

Slower machine than in original paper

NA: Memory error

Outline

54

- 1. Introduction
- 2. Common Claims
- 3. Implementations in R
- 4. Discussion & Conclusion

Discussion

55

Pros

- Little or no tuning and data recoding required
- Good performance on almost any kind of data
- Overfitting not a major problem
- Variable importance measures available

Cons

- Bad performance on images, speech and natural language processing
- Not per se interpretable
- Will not win prediction challenges

Discussion

56

Fast implementations available

- Rborist fastest for continuous features and large sample sizes
- ranger fastest in all other cases
- Efficient analysis of genome-wide data with ranger

Caution

- Some packages differ in results
- Performance depends on type and size of data

Conclusion

5/

Random forests: The first-choice method for every data analysis?

Conclusion

57

Random forests: The first-choice method for every data analyses!