Probabilities

Common Discrete Probability Distributions

Mohamad GHASSANY

EFREI PARIS

Loi Uniforme Discrète $\mathcal{U}(n)$

Bernoulli distribution $\mathcal{B}(p)$

Binomial distribution $\mathcal{B}(n, p)$

Poisson distribution $\mathfrak{P}(\lambda)$

Geometric or Pascal distribution $\mathfrak{G}(p)$

Negative Binomial distribution $\mathcal{BN}(r, p)$

Loi Uniforme Discrète $\mathcal{U}(n)$

Definition

A random variable X has a **discrete uniform distribution** if each of the n values in its range, say, x_1, x_2, \ldots, x_n , has equal probability. Then:

$$P(X = x_i) = \frac{1}{n} \qquad \forall i \in \{1, \dots, n\}$$

We say $X \sim \mathcal{U}(n)$.

Example

The distribution of the numbers obtained at the throw of the dice (if it is fair) follows a uniform distribution whose probability distribution is the following:

xi	1	2	3	4	5	6
$P(X = x_i)$	$\frac{1}{6}$	$\frac{1}{6}$	$\frac{1}{6}$	$\frac{1}{6}$	$\frac{1}{6}$	$\frac{1}{6}$

Particular case

In the particular case of a discrete uniform distribution where each value of the random variable X corresponds to its rank, i.e. $x_i = i \ \forall i \in \{1, ..., n\}$, we have:

$$E(X) = \frac{n+1}{2}$$
 et $V(X) = \frac{n^2 - 1}{12}$

Demonstration

$$\sum_{i=1}^n i = \frac{n(n+1)}{2} \quad \text{et} \quad \sum_{i=1}^n i^2 = \frac{n(n+1)(2n+1)}{6}$$

Example

The example of the throw of the dice: we can directly calculate the moments of X:

$$E(X) = \frac{6+1}{2} = 3.5$$
 et $V(X) = \frac{6^2-1}{12} = \frac{35}{12} \simeq 2.92.$

Bernoulli distribution $\mathfrak{B}(p)$

Indicator random variable

Let A an event; the indicator random variable of A, defined by $X = \mathbb{1}_A$, is:

$$X(\omega) = \mathbb{1}_{A}(\omega) = \begin{cases} 0 & \text{si } \omega \in \overline{A} \\ 1 & \text{si } \omega \in A \end{cases}$$

So $X(\Omega) = \{0, 1\}$ with:

$$\begin{split} \mathsf{P}(X=1) &= \mathsf{P}\{\omega \in \Omega / X(\omega) = 1\} = \mathsf{P}(A) = p \\ \mathsf{P}(X=0) &= \mathsf{P}\{\omega \in \Omega / X(\omega) = 0\} = \mathsf{P}(\bar{A}) = 1 - \mathsf{P}(A) = q \\ \text{avec } p + q = 1 \end{split}$$

Definition

We say X follows a Bernoulli distribution of parameter p = P(A), we write $X \sim \mathcal{B}(p)$. A Bernoulli distribution is associated to "Bernoulli's event", which is a random experience having two possibilities: success (X = 1) or fail (X = 0).

Bernoulli's Distribution function

$$\mathsf{F}(x) = \left\{ \begin{array}{ll} 0 & \quad \mbox{si } x < 0 \\ 1 - p & \quad \mbox{si } 0 \leqslant x < 1 \\ 1 & \quad \mbox{si } x \geqslant 1. \end{array} \right.$$

Expected value

$$\mathsf{E}(\mathsf{X}) = \mathsf{1} \times \mathsf{P}(\mathsf{A}) + \mathsf{0} \times \mathsf{P}(\bar{\mathsf{A}}) = \mathsf{P}(\mathsf{A}) = \mathsf{p}$$

Variance

$$V(X) = E(X^2) - E^2(X) = p - p^2 = p(1-p) = pq$$

because

$$E(X^2) = 1^2 \times P(A) + 0^2 \times P(\overline{A}) = P(A) = p$$

Binomial distribution $\mathcal{B}(n, p)$

- Described for the 1st time by *Isaac Newton* in 1676 and demonstrated for the 1st time by the swiss mathematician *Jacob Bernoulli* in 1713.
- ▶ Binomial distribution is one most frequently used probability distributions in applied statistics.
- n independant Bernoulli events.
- Each has p as probability of success and 1 p probability of fail.

A A Ā A Ā ... Ā A A

- S S E S E ... E S S
- X = the number of success on all n events.
- ▶ X depends of two parameters n and p.

S S E S E ... E S S

- X = the number of success on all n events.
- $\blacktriangleright X(\Omega) = \{0, 1, \ldots, n\}$

$$P(X = k) = {n \choose k} p^k (1 - p)^{n-k} \qquad 0 \leqslant k \leqslant n$$

- $\binom{n}{k}$ is the number of all samples of size n containing exactly k successes, of probability p^k , order is not counted, and n k fails, of probability $(1 p)^{n-k}$.
- We write $X \sim \mathcal{B}(n, p)$.

Remark

A Birnoulli random variable is a Binomal variable of parameters (1, p).

$$X \sim \mathcal{B}(p) \iff X \sim \mathcal{B}(1,p)$$

Pascal's triangle & Binomial theorm

Pascal's triangle

$$\binom{n}{k} = \binom{n-1}{k-1} + \binom{n-1}{k} \quad \forall n \ge 1 \text{ et } 1 \leqslant k \leqslant n-1$$

Binomial theorm

$$(x+y)^{n} = \sum_{k=0}^{n} \binom{n}{k} x^{n-k} y^{k}$$
$$\sum_{k=0}^{n} P(X=k) = \sum_{k=0}^{n} \binom{n}{k} p^{k} (1-p)^{n-k} = [p+(1-p)]^{n} = 1$$

9 / 22

Example

We flip five coins. The results are supposed to be independent. What is the probability distribution of X who is thenumber of heads.

Solution

- X = nombre de piles (*succès*).
- ▶ n = 5.
- ▶ p = 1/2.
- ► $X \sim \mathcal{B}(5, \frac{1}{2}).$
- ► $X(\Omega) = \{0, 1, ..., 5\}$
- $P(X = 0) = {5 \choose 0} \left(\frac{1}{2}\right)^0 \left(1 \frac{1}{2}\right)^{5-0} = \frac{1}{32}$
- $P(X = 1) = {5 \choose 1} (\frac{1}{2})^1 (1 \frac{1}{2})^4 = \frac{5}{32}$ • $P(X = 2) = {5 \choose 2} (\frac{1}{2})^2 (1 - \frac{1}{2})^3 = \frac{10}{32}$

•
$$P(X = 3) = {5 \choose 3} (\frac{1}{2})^3 (1 - \frac{1}{2})^2 = \frac{10}{32}$$

• $P(X = 4) = {5 \choose 4} (\frac{1}{2})^4 (1 - \frac{1}{2})^1 = \frac{5}{32}$

•
$$P(X = 5) = {5 \choose 5} (\frac{1}{2})^5 (1 - \frac{1}{2})^0 = \frac{1}{32}$$

If $X \sim \mathcal{B}(n, p)$ so E(X) = np and V(X) = np(1-p)

demonstration

1st method: We assigne to each i, $1 \leq i \leq n$, a Bernoulli random variable

$$\mathbb{1}_{A} = X_{\mathfrak{i}} = \begin{cases} 1 & \text{if } A \text{ is realized} \\ 0 & \text{if not} \end{cases}$$

So we write: $X = \sum_{i=1}^n X_i = X_1 + X_2 + \ldots + X_n$ Then

$$\mathsf{E}(\mathsf{X}) = \mathsf{E}\left(\sum_{i=1}^{n} X_{i}\right) = \sum_{i=1}^{n} \mathsf{E}(X_{i}) = \mathsf{np}$$

et

$$V(X) = V\left(\sum_{i=1}^{n} X_i\right) = \sum_{i=1}^{n} V(X_i) = np(1-p)$$

because X_i are independent.

2nd method: Direct calculation.

•
$$E(X) = \sum_{k=0}^{n} k {n \choose k} p^k (1-p)^{n-k} = ... = np$$

▶
$$V(X) = E(X^2) - E^2(X)$$

• To get
$$E(X^2)$$
 we go through $E[X(X-1)]$.

►
$$V(X) = E(X^2) - E^2(X) = E[X(X-1)] + E(X) - E(X^2)$$

•
$$E[X(X-1)] = \sum_{k=0}^{n} k(k-1) \frac{n!}{k!(n-k)!} p^k (1-p)^{n-k} = \ldots = n(n-1)p^2$$

•
$$V(X) = n(n-1)p^2 + np - (np)^2 = np(1-p)$$

Example

The number of heads after n coin flips follows a Binomial distribution $\mathcal{B}(n, 1/2)$:

$$\mathsf{P}(X=k) = \binom{\mathfrak{n}}{k} \left(\frac{1}{2}\right)^k \left(\frac{1}{2}\right)^{\mathfrak{n}-k} = \frac{\binom{\mathfrak{n}}{k}}{2^{\mathfrak{n}}}, \quad \mathfrak{0} \leqslant k \leqslant \mathfrak{n}$$

with E(X) = n/2 and V(X) = n/4.

Example

The number N of red balls appearing in n draws with replacement from an urn containing two red, three green and one black follows a Binomial distribution $\mathcal{B}(n, 1/3)$:

$$\mathsf{P}(\mathsf{N}=k) = \binom{\mathsf{n}}{k} \left(\frac{1}{3}\right)^k \left(\frac{2}{3}\right)^{\mathsf{n}-k} = \binom{\mathsf{n}}{k} \frac{2^{\mathsf{n}-k}}{3^\mathsf{n}}, \quad \mathsf{0} \leqslant \mathsf{k} \leqslant \mathsf{n}$$

with E(X) = n/3 and V(X) = 2n/9.

Remark

If $X_1 \sim \mathcal{B}(n_1, p)$ et $X_2 \sim \mathcal{B}(n_2, p)$, X_1 and X_2 being **indenpendent**, so $X_1 + X_2 \sim \mathcal{B}(n_1 + n_2, p)$. This results from the definition of a Binomial distribution since we sum up here the result of $n_1 + n_2$ independent events.

Poisson distribution $\mathcal{P}(\lambda)$

Definition

A random variable X follows a Poisson distribution of parameter $\lambda > 0$ if it is defined on $\mathbb N$ and

$$\mathsf{P}(\mathsf{X}=\mathsf{k})=e^{-\lambda}\frac{\lambda^{\mathsf{k}}}{\mathsf{k}!},\quad\mathsf{k}\in\mathbb{N}$$

This distribution depends on only one real positive parameter $\lambda,$ we write $X\sim \mathfrak{P}(\lambda).$

Remark

$$e^{x} = \sum_{i=0}^{+\infty} \frac{x^{i}}{i!}$$

$$\sum_{k=0}^{\infty} \mathsf{P}(X=k) = \sum_{k=0}^{\infty} e^{-\lambda} \frac{\lambda^k}{k!} = e^{-\lambda} \sum_{k=0}^{\infty} \frac{\lambda^k}{k!} = e^{-\lambda} e^{\lambda} = 1$$

If $X \sim \mathfrak{P}(\lambda)$ So $E(X) = \lambda$ and $V(X) = \lambda$

Expected value

$$E(X) = \sum_{k=0}^{\infty} k P(X = k)$$
$$= \dots$$
$$= \lambda$$

Variance

$$\blacktriangleright$$
 First we calculate $E(X^2) = \sum_{k=0}^\infty k^2 P(X=k) = \ldots = \lambda (\lambda + 1).$

Then

$$V(X) = \lambda(\lambda + 1) - \lambda^2 = \lambda$$

Example

- X = number of laptops sold by day in a shop.
- Suppose that $X \sim \mathcal{P}(5)$.
- ▶ The probability of solding 5 laptops by day is

$$P(X = 5) = e^{-5} \frac{5^5}{5!} = e^{-5} \simeq 0.1755$$

▶ The probability of solding at least 2 laptops is

$$P(X \ge 2) = 1 - \left(e^{-5}\frac{5^0}{0!} + e^{-5}\frac{5^1}{1!}\right) \simeq 0.9596$$

• The aveage number of laptops sold by day is 5 since $E(X) = \lambda = 5$.

Proprieties

If X and Y are two independent random variable of Poisson distribution, $X \sim \mathcal{P}(\lambda)$ and $Y \sim \mathcal{P}(\mu)$, Then their sum is also Poisson: $X + Y \sim \mathcal{P}(\lambda + \mu)$.

If $n \to \infty$ and $p \to 0$ alors $X : \mathfrak{B}(n, p) \sim \mathfrak{P}(\lambda)$

Remark

A good approximation is obtained if $n \geqslant 50$ and $np \leqslant 5.$

In this context, the Poisson distribution is often used to model the number of successes when an experiment with a very low chance of success is repeated a very large number of times.

Applications of Poisson distribution

- ▶ The number of persons over 100 years in a community.
- ▶ The number of fake phone numbers dialed in one day.
- ▶ The number of customers entering a given post office in one day.
- For the number of α particles emitted by a radioactive material during a certain period of time.

The variables in these examples are approximately Poisson.

Geometric or Pascal distribution $\mathfrak{G}(p)$

- \triangleright ϵ : "Repeat a Bernoulli event until the first success".
- Example:

Ā Ā Ā Ā Ā ... Ā Ā A E E E E E ... E E S

- Fach trial has p as probability of success and 1 p as probability of fail.
- X = "number of events".

$$\underbrace{\mathsf{E} \ \mathsf{E} \ }_{\mathsf{k}-1} \ \mathsf{S}$$

•
$$X(\Omega) = \mathbb{N}^* = \{1, 2, 3, \ldots\}$$
. We say $X \sim \mathfrak{G}(p)$.

- $\blacktriangleright \forall k \in \mathbb{N}^* \quad P(X = k) = (1 p)^{k 1} p$
- ► Attention: Sometimes X = "number of events until having the first success". In this case $X(\Omega) = \mathbb{N}$. We say $X \sim \mathfrak{G}(p)$ on \mathbb{N} .
- ▶ This distribution is often used to model lifetimes, or waiting time, when the time is measured in discrete way (number of days for example).
- \blacktriangleright Série entière : $\sum_{k=0}^\infty x^k = 1/(1-x)$ pour |x|<1
- $\sum_{k=1}^{\infty} P(X = k) = \sum_{k=1}^{\infty} (1-p)^{k-1} p = p \sum_{j=0}^{\infty} (1-p)^j \sum_{k=1}^{\infty} (1-p)^{k-1} p = p \sum_{j=0}^{\infty} (1-p)^j = p \frac{1}{1-(1-p)} = 1$

Expected value

•
$$E(X) = \sum_{k=1}^{\infty} kP(X = k) = \sum_{k=1}^{\infty} kp(1-p)^{k-1} = p \sum_{k=1}^{\infty} k(1-p)^{k-1}$$

▶ Power series:
$$\sum_{k=0}^{\infty} x^k = 1/(1-x)$$
 pour $|x| < 1$

▶ 1st derivative:
$$\sum_{k=1}^{\infty} kx^{k-1} = 1/(1-x)^2$$

• So
$$E(X) = \frac{p}{[1-(1-p)]^2} = \frac{1}{p}$$

In other words, if independent trials with probability p of success are performed until the first success occurs, the expected number of trials needed is equal to 1/p. For example, the expected number of throws of a balanced die that it takes to get the value 1 is 6.

Variance of Geometric distribution

▶
$$V(X) = E(X^2) - E^2(X) = E[X(X-1)] + E(X) - E^2(X)$$
. While,

$$\begin{split} \mathsf{E}[\mathsf{X}(\mathsf{X}-1)] &= \sum_{k=2}^{\infty} k(k-1) \mathfrak{p}(1-\mathfrak{p})^{k-1} \\ &= \mathfrak{p}(1-\mathfrak{p}) \sum_{k=2}^{\infty} k(k-1) (1-\mathfrak{p})^{k-1} \end{split}$$

$$\blacktriangleright$$
 1st derivative of Power series: $\sum_{k=1}^\infty kx^{k-1} = 1/(1-x)^2$

$$\blacktriangleright$$
 2nd derivative of Power series: $\sum_{k=2}^\infty k(k-1)x^{k-2}=2/(1-x)^3$

• So
$$E[X(X-1)] = \frac{2p(1-p)}{[1-(1-p)]^3} = \frac{2(1-p)}{p^2}$$

• Then
$$V(X) = E[X(X-1)] + E(X) - E^2(X) = \frac{1-p}{p^2}$$
.

2

Negative Binomial distribution $\mathcal{BN}(r,p)$

- ε : "Repeat a Bernoulli event until r successes".
- Example with r = 3:

Ā A Ā Ā Ā A Ā Ā A E S E E E S E E S

But we can obtain r successes in other ways:

S	Е	Е	Е	Е	Е	S	Е	S
E	Е	Е	Е	S	Е	S	Е	S

- Fach trial has p as probability of success and 1 p as probability of fail.
- ▶ Let X = "number of trails to obtain this result".

$$\underbrace{F = 1 \text{ succes and } k - r\text{ checs}}_{X=k}$$

$$\underbrace{K(\Omega) = \{r, r+1, r+2, \ldots\}}_{X=k}. \text{ We say } X \sim \mathcal{BN}(r, p).$$

$$\forall k \in X(\Omega),$$

$$(1, -1)$$

$$P(X = k) = {\binom{k-1}{r-1}} p^r (1-p)^{k-r}$$

- ε : "Repeat a Bernoulli event until r successes".
- Let,

 $\mathsf{E} \ \dots \ \mathsf{E} \ \mathsf{S} \ \mathsf{E} \ \dots \ \mathsf{E} \ \mathsf{S} \dots \ \mathsf{E} \ \mathsf{S} \dots \ \mathsf{E} \ \mathsf{S}$

- Let, Y_1 the number of trials until the first success, Y_2 the number of supplementary trials until the 2nd success, Y_3 until the 3rd success and so on.
- ▶ Which means,

- ▶ The draws being independent and always having the same probability of success, each of the variables Y_1, Y_2, \ldots, Y_r is Geometric $\mathcal{G}(p)$.
- X ="number of trials until r successes" = $Y_1 + Y_2 + \ldots + Y_r$.
- ► So,

$$E(X) = E(Y_1) + E(Y_2) + \ldots + E(Y_r) = \sum_{i=1}^r \frac{1}{p} = \frac{r}{p}$$

and

$$V(X)=\sum_{\mathfrak{i}=1}^r V(Y_\mathfrak{i})=\frac{r(1-p)}{p^2}$$

since Y_i are independent.