Probabilities

Continuous Random Variables

Mohamad GHASSANY

EFREI PARIS

Recall: Discrete Random Variable

Continuous Random Variable

Distribution function of continuous random variables

Function of a continuous random variable

Moments of Continuous Random Variable

Recall: Discrete Random Variable

Discrete Random Variable

- > X is a *discrete* random variable if the set of possible values of X, $X(\Omega)$, is finite or countable.
 - The probability distribution defined on $X(\Omega)$ by $p_i = p(x_i) = P(X = x_i)$
 - $p(x_i) \ge 0$, $\sum_{i=1}^{\infty} p(x_i) = 1$, and $P(a < X \le b) = \sum_{i/a \le x_i \le b} p(x_i)$.

Distribution function of a d.r.v.

- ▶ The distribution function of X, that we note $F_X(\alpha)$, defined for each real number α , $-\infty < \alpha < \infty$, by $F_X(\alpha) = P(X \leq \alpha) = \sum_{i/x_i \leq \alpha} P(X = x_i)$.
 - Staircase function.
 - $F_X(\alpha) \leq 1$ (it is a probability).
 - F_X(a) is continuous at right.

•
$$\lim_{a \to -\infty} F_X(a) = 0$$
 et $\lim_{a \to \infty} F_X(a) = 1$
P(a < X < b) = F(b) = F(c) = pour tout

• $P(a < X \le b) = F(b) - F(a)$ pour tout a < b

Moments of d.r.v.

•
$$E(X) = \sum_{i \in \mathbb{N}} x_i p(x_i)$$

▶
$$V(X) = E(X^2) - E^2(X)$$

Continuous Random Variable

- Previously we have dealt with Discrete Random Variables, i.e. variables whose universe is finite or countable.
- ▶ There are however variables whose universe is infinite uncountable.
- ► Examples:
 - The arrival time of a train at a given station.
 - The lifetime of a transistor.

Definition

X is a continuous random variable ¹ with density if there exists a non-negative function f defined for any $x \in \mathbb{R}$ and verifying for any set B of real numbers the property

$$P(X \in B) = \int_B f(x) dx$$

The function f is called density function of the random variable X.

- ▶ All probability questions related to X can be treated with f.
- For example if B = [a, b], we get:

$$\underline{P}(a \leqslant X \leqslant b) = \int_{a}^{b} f(x) dx$$

¹Not all Continuous Random Variable have a density function.

Graphically, $P(a \leq X \leq b)$ is the area of the surface between the x-axis, the curve corresponding to f(x) and the lines x = a and x = b.

Figure 1: $P(a \leqslant X \leqslant b) = area \text{ of shaded surface}$

Figure 2: The colored areas corresponds to probabilities. f(x) being a probability density function.

eFrei

Properties of the density function

Proprieties

For any continuous random variable X of density f:

- $\models f(x) \geqslant 0 \quad \forall x \in \mathbb{R}$
- $\int_{-\infty}^{+\infty} f(x) dx = 1$
- ▶ Since $P(a \leqslant X \leqslant b) = \int_a^b f(x) dx$, if a = b then $P(X = a) = \int_a^a f(x) dx = 0$
- > This means that the probability of a continuous random variable taking a fixed isolated value is always zero.

Example

Let X be the random real variable of probability density

$$f(x) = \begin{cases} kx & \text{if } 0 \leqslant x \leqslant 5\\ 0 & \text{if not} \end{cases}$$

1. Calculate k.

2. Calculate: $P(1 \leqslant X \leqslant 3)$, $P(2 \leqslant X \leqslant 4)$ and P(X < 3).

Example

Let X be a continuous random variable with density function

$$f(x) = \begin{cases} \frac{1}{6}x + k & \text{if } 0 \leqslant x \leqslant 3\\ 0 & \text{if not} \end{cases}$$

1. Calculate k.

2. Calculate $P(1 \leqslant X \leqslant 2)$

Distribution function of continuous random variables

Definition

If as for Random Variable Discrete, we define the distribution function of X by:

$$F_X \colon \mathbb{R} \longrightarrow \mathbb{R}$$
$$x \longmapsto F_X(a) = P(X \leqslant a)$$

then the relation between the distribution function F_X and the probability density function f(x) is the following:

$$\forall \quad a \in \mathbb{R} \quad F_X(a) = P(X \leqslant a) = \int_{-\infty}^{a} f(x) dx$$

Proprieties

For a continuous random variable X:

•
$$F'_X(x) = \frac{d}{dx}F_X(x) = f(x).$$

For all real numbers $a \leq b$,

$$P(a < X < b) = P(a < X \leq b) = P(a \leq X < b)$$
$$= P(a \leq X \leq b) = F_X(b) - F_X(a) = \int_a^b f(x) dx$$

The distribution function corresponds to the cumulative probabilities associated with the continuous random variable on an interval.

Figure 3: The area shaded in green under the curve of the density function corresponds to the probability $P(X < a) = F_X(a)$ and is 0.5 because this corresponds exactly to half of the total area under the curve.

Proprieties

The properties of the distribution function are as follows:

- 1. F_X is continuous on $\mathbb{R},$ derivable at any point where f is continuous.
- 2. F_X is increasing on \mathbb{R} .
- 3. F_X has values in [0, 1].
- $\label{eq:rescaled} \textbf{4.} \ \lim_{x \to -\infty} F_X(x) = \textbf{0} \text{ and } \lim_{x \to +\infty} F_X(x) = \textbf{1}.$

Example

Let X and Y two random variables of density functions:

$$f_X(x) = \begin{cases} kx & \text{if } 0 \leqslant x \leqslant 5\\ 0 & \text{if not} \end{cases}$$

and

$$f_Y(y) = \left\{ \begin{array}{ll} \frac{1}{6}y + k & \text{if } 0 \leqslant y \leqslant 3 \\ 0 & \text{if not} \end{array} \right.$$

Calculate $F_X(\alpha)$ and $F_Y(\alpha)$ for all $\alpha \in \mathbb{R}$.

Function of a continuous random variable

- ▶ Let X be a continuous random variable with density f_X and distribution function F_X .
- ▶ Let h be a continuous function defined on $X(\Omega)$, then Y = h(X) is a random variable.
- ▶ To determine the density of Y, denoted f_Y , we first compute the distribution function of Y, denoted F_Y , then we derivate it to determine f_Y .

Calculating the densities

Let X be a continuous random variable with density f_X and distribution function F_X . Find the density function of the following random variables:

►
$$Y = aX + b$$

$$\blacktriangleright$$
 Z = X²

$$\blacktriangleright$$
 T = e^X

Example

Let X a random variable having the density function:

$$f_X(x) = 2x \times \mathbb{1}_{[0,1]}(x)$$

Determine the density function of: Y = 3X + 1, $Z = X^2$ and $T = e^X$.

Moments of Continuous Random Variable

Definition

If X is a continuous random variable of density f, we call the expected value of X, the real E(X), defined by:

$$\mathsf{E}(\mathsf{X}) = \int_{-\infty}^{+\infty} \mathsf{x} \mathsf{f}(\mathsf{x}) d\mathsf{x}$$

if it exists.

The properties of the expected value of a continuous random variable are the same as for a discrete random variable.

Proprieties

Let X be a continuous random variable,

- $\blacktriangleright E(aX+b) = aE(X) + b \qquad a \geqslant 0 \text{ and } b \in \mathbb{R}.$
- ▶ If $X \ge 0$ then $E(X) \ge 0$.
- \blacktriangleright If X and Y are two Random Variables defined on the same universe Ω then

$$E(X + Y) = E(X) + E(Y)$$

Theorem

If X is a random variable of density f(x), then for any real function g we have

$$\mathsf{E}[g(X)] = \int_{-\infty}^{+\infty} g(x) f(x) dx$$

Example

Let X a random variable of density

 $f_X(x) = \begin{cases} 2x & \text{if } 0 \leqslant x \leqslant 1 \\ 0 & \text{if not} \end{cases}$

Calculate the expected value of Y = 3X + 1, Z = X² and T = e^{X} .

The variance of a random variable V(X) is a dispersion parameter which corresponds to the centered moment of order 2 of the random variable X.

Definition

If X is a random variable with expectation E(X), we call the variance of X the real

$$V(X) = E([X - E(X)]^2) = E(X^2) - [E(X)]^2$$

If X is a continuous random variable, we compute $E(X^2)$ using the transfer theorem,

$$\mathsf{E}(\mathsf{X}^2) = \int_{-\infty}^{+\infty} \mathsf{x}^2 \mathsf{f}(\mathsf{x}) \, \mathsf{d}\mathsf{x}$$

Example

Calculate la variance of X defined in the previous example.

Proprieties

If X is a random variable with a variance then:

- ▶ $V(X) \ge 0$, if it exists.
- ▶ $\forall a \in \mathbb{R}, V(aX) = a^2 V(X)$
- ▶ \forall (a, b) \in \mathbb{R} , V(aX + b) = a²V(X)
- ▶ If X and Y are two independent Random Variables, V(X + Y) = V(X) + V(Y)

Definition

If X is a random variable with variance V(X), we call the standard deviation of X the real:

$$\sigma_X = \sqrt{V(X)}$$