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Recall: Discrete Random Variable

Discrete Random Variable

» X is a discrete random variable if the set of possible values of X, X(Q), is finite or countable.
® The probability distribution defined on X(Q) by pi = p(xi) = P(X =x3i)
®p(xi) 20, Y p(xi)=1 and Pla<X<b)=3; qon <bP(xi)

Distribution function of a d.r.v.

» The distribution function of X, that we note Fx(a), defined for each real number a, —oco < a < oo, by
Fx(a) =P(X < a)=3;/, <a P(X=x3).

Staircase function.

Fx (a) < 1 (it is a probability).

Fx (a) is continuous at right.
lim Fx(a)=0et lim Fx(a)=1

a— —0o0 a—oo

Pla<X<b)=F(b)—F(a) pour tout a < b

Moments of d.r.v.

» E(X) =3 ienxiP(xi)
» V(X) = E(X?2) — E2(X)
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efrei Continuous Random Variable - Density function and Probabilities

» Previously we have dealt with Discrete Random Variables, i.e. variables whose universe is finite or

countable.
» There are however variables whose universe is infinite uncountable.
» Examples:

® The arrival time of a train at a given station.

® The lifetime of a transistor.
Definition
X is a continuous random variable ' with density if there exists a non-negative function f defined for any
x € R and verifying for any set B of real numbers the property

P(X€B) = JB f(x)dx

The function f is called density function of the random variable X.

» All probability questions related to X can be treated with f.
» For example if B = [a, b], we get:

INot all Continuous Random Variable have a density function.
Mohamad GHASSANY Continuous Random Variable 4 /16



Continuous Random Variable - Graphical Interpretation

Graphically, P(a < X < b) is the area of the surface between the x-axis, the curve corresponding to f(x) and

the lines x = a and x = b.

a

X

Figure 1: P(a < X < b) = area of shaded surface
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efrei Continuous Random Variable - Graphical Interpretation - Example
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Figure 2: The colored areas corresponds to probabilities. f(x) being a probability density function.
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Properties of the density function

Proprieties
For any continuous random variable X of density f:
» f(x) >0 VxeR
> f:rgz f(x)dx =1
» Since P(a < X < b) = [P f(x)dx, if a = b then P(X = [%f(x)dx =0

» This means that the probability of a continuous random variable taking a fixed isolated value is always zero.
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Continuous Random Variable - Examples

Example
Let X be the random real variable of probability density

kx if 0<x<5
f — <X X
(x) { 0 if not

1. Calculate k.
2. Calculate: P(1 < X <3),P(2

N

X < 4) and P(X < 3).

Example
Let X be a continuous random variable with density function

1 .

=x+k if 0<x<3
£ _ 6 X X
(x) {0 if not

1. Calculate k.
2. Calculate P(1 < X < 2)
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Distribution function of continuous random variables

Definition
If as for Random Variable Discrete, we define the distribution function of X by:
Fx:R — R
x — Fx(a) =P(X < a)

then the relation between the distribution function Fx and the probability density function f(x) is the

following: a
YV a€eR Fx(a):P(Xga):J f(x)dx

Proprieties
For a continuous random variable X:

» FL(x) = %Fx(x) = f(x).

» For all real numbers a < b,
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Distribution function of continuous random variables

The distribution function corresponds to the cumulative probabilities associated with the continuous random
variable on an interval.

0.04 */

—20 10 0 a 10 20 30 40
X

Figure 3: The area shaded in green under the curve of the density function corresponds to the probability P(X < a) = Fx (a)
and is 0.5 because this corresponds exactly to half of the total area under the curve.
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Distribution function of continuous random variables

Proprieties

The properties of the distribution function are as follows:

1. Fx is continuous on R, derivable at any point where f is continuous.
2. Fx is increasing on R.

3. Fx has values in [0, 1].
4

. lim Fx(x)=0and lim Fx(x)=1.
X——00 X—+00

Example
Let X and Y two random variables of density functions:

le I D€Ll
f — X ~
x(x) { 0 if not

and

Calculate Fx(a) and Fy(a) for all a € R.
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Function of a continuous random variable

» Let X be a continuous random variable with density fx and distribution function Fx.

» Let h be a continuous function defined on X(Q), then Y = h(X) is a random variable.

» To determine the density of Y, denoted fy, we first compute the distribution function of Y, denoted Fy,
then we derivate it to determine fy.

Calculating the densities

Let X be a continuous random variable with density fx and distribution function Fx. Find the density
function of the following random variables:

» Y=aX+b
» Z=X?

» T =eX
Example

Let X a random variable having the density function:
fx[X) =2Xx X ]1[0'1](7{)

Determine the density function of: Y =3X +1, Z = X2 and T = eX.
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Expected value

Definition

If X is a continuous random variable of density f, we call the expected value of X, the real E(X), defined by:

—+00
E(X) :J xf(x)dx

—00

if it exists.

The properties of the expected value of a continuous random variable are the same as for a discrete random
variable.
Proprieties
Let X be a continuous random variable,
» E(aX+Db)=aE(X)+Db a>0and b eR.
» If X >0 then E(X) > 0.

» If X and Y are two Random Variables defined on the same universe QO then

E(X+Y)=E(X)+E(Y)
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Transfer theorem

Theorem

If X is a random variable of density f(x), then for any real function g we have
+00
Elg()] = | g(f(x)ax

Example

Let X a random variable of density

ox if 0<x<1
f = ~ X
x(x) { 0 if not

Calculate the expected value of Y =3X + 1, Z = X2 and T = eX.
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Variance of a continuous random variable

The variance of a random variable V' (X) is a dispersion parameter which corresponds to the centered moment
of order 2 of the random variable X.

Definition

If X is a random variable with expectation E(X), we call the variance of X the real
V(X) = E([X — E(X)]?) = E(X?) — [E(X)]?
If X is a continuous random variable, we compute E(Xz) using the transfer theorem,

E(X?) = -[-*—oo x2f(x)dx

—00

Example
Calculate la variance of X defined in the previous example.

Mohamad GHASSANY Moments of Continuous Random Variable 15/ 16



Variance and standard deviation

Proprieties
If X is a random variable with a variance then:
» V(X) >0, if it exists.
» VaeR V(aX) = a?V(X)
» V (a,b) €ER,V(aX +b) = a®V(X)
» If X and Y are two independent Random Variables, V(X + Y) = V(X) + V(Y)

Definition
If X is a random variable with variance V (X), we call the standard deviation of X the real:

Ox = \/V(XJ
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