

STATISTIQUE INFÉRENTIELLE

Contrôle continu

Calculatrice non autorisée

28 novembre 2020 - durée 45min

Rappel: Une variable aléatoire X suit une loi de Poisson de paramètre $\lambda > 0$ si

$$P(X = k) = e^{-\lambda} \frac{\lambda^k}{k!}$$
 si $k \in \mathbb{N}$

Exercice 1 (7 points)

On considère une suite de variables aléatoires $(X_n)_{n\in\mathbb{N}^*}$, mutuellement indépendantes, dont chacune suite la loi de Poisson de paramètre 1. Pour tout n de \mathbb{N}^* , on pose $\overline{X}_n = \frac{1}{n}\sum_{i=1}^n X_i$ et $S_n = X_1 + \ldots + X_n$.

- 1. Rappeler le théorème centrale limite (TCL) et déduire la loi de \overline{X}_n si n est grand.
- 2. Donner, à l'aide du TCL, la loi de S_n si n est grand.
- 3. En déduire que $\lim_{n \to +\infty} P(S_n \le n) = \frac{1}{2}$.

Exercice 2 (7 points)

- 1. Déterminer l'estimateur du paramètre λ de la loi de Poisson à partir d'un échantillon aléatoire de taille n avec,
 - (a) la méthode des moments.
 - (b) la méthode du maximum de vraisemblance.
- 2. Soit une variable aléatoire X de fonction de densité $f(x) = (\theta + 1)x^{\theta} \times \mathbb{1}_{]0,1[}(x)$. Déterminer l'estimateur de θ par la méthode du maximum de vraisemblance.

Exercice 3 (6 points)

Soit X_1 et X_2 deux variables aléatoires indépendantes d'espérance μ et de variance σ^2 . Soit les estimateurs de μ suivants:

$$\theta_1 = \frac{X_1 + X_2}{2}$$
 et $\theta_2 = \frac{X_1 + 3X_2}{4}$

- 1. Est ce que ces deux estimateurs de μ sont biaisés?
- 2. Entre θ_1 et θ_2 que choisir pour estimer μ ?